Companies Home Search Profile

Pearson Product Analytics For Data-Driven Decisions Derive Insights From Web Analytics Data

Focused View

7:16:11

57 View
  • 00001 Product Analytics for Data-Driven Decisions - Introduction.mp4
    04:09
  • 00002 Theory Building Techniques in Product Analytics.mp4
    01:07
  • 00003 Learning objectives.mp4
    01:19
  • 00004 1.1 The Data-Generating Process.mp4
    01:53
  • 00005 1.2 The Characteristics of a Social System.mp4
    13:28
  • 00006 1.3 Types of Inference.mp4
    08:31
  • 00007 1.4 Pitfalls for Analysis.mp4
    05:08
  • 00008 1.5 Actionable Insights.mp4
    02:51
  • 00009 Learning objectives.mp4
    01:37
  • 00010 2.1 Theory Creation Process.mp4
    05:18
  • 00011 2.2 Elements of Theory Building.mp4
    23:55
  • 00012 2.3 Conceptualization and Measurement.mp4
    08:36
  • 00013 2.4 Example - Theory Building for Web Products.mp4
    08:22
  • 00014 Learning objectives.mp4
    01:06
  • 00015 3.1 Understanding Behavior.mp4
    05:23
  • 00016 3.2 Psychological Theories of Behavior Change.mp4
    06:12
  • 00017 3.3 Neurological Theories of Behavior Change.mp4
    03:24
  • 00018 3.4 Behavior Change for Web Products.mp4
    07:23
  • 00019 Testing Theories in Product Analytics - Feature Metric Development.mp4
    03:14
  • 00020 Learning objectives.mp4
    00:52
  • 00021 4.1 Distributions.mp4
    09:15
  • 00022 4.2 Mean Mode and Variance.mp4
    10:17
  • 00023 4.3 Skew Kurtosis.mp4
    03:15
  • 00024 4.4 Sampling.mp4
    17:56
  • 00025 4.5 Other Types of Distributions.mp4
    03:40
  • 00026 4.6 Calculating Linear Correlations.mp4
    06:28
  • 00027 Learning objectives.mp4
    00:29
  • 00028 5.1 Period -- Age -- Cohort.mp4
    08:01
  • 00029 5.2 Cohort and Period Metrics.mp4
    12:26
  • 00030 5.3 The Denominator Problem.mp4
    05:29
  • 00031 5.4 Period Person Years.mp4
    12:51
  • 00032 5.5 Standardization.mp4
    03:29
  • 00033 5.6 Re-weighting.mp4
    11:51
  • 00034 Learning objectives.mp4
    00:32
  • 00035 6.1 Common Metrics--Part 1.mp4
    07:36
  • 00036 6.2 Common Metrics--Part 2.mp4
    17:13
  • 00037 6.3 Funnel Metrics.mp4
    07:16
  • 00038 6.4 Progression Metrics.mp4
    05:19
  • 00039 6.5 Survival Metrics.mp4
    09:31
  • 00040 6.6 Pitfalls of Metric Development.mp4
    06:07
  • 00041 Learning objectives.mp4
    00:25
  • 00042 7.1 Measuring Complex Concepts.mp4
    12:51
  • 00043 7.2 Basic Survey Design Best Practices.mp4
    09:27
  • 00044 7.3 User Segmentation vs. Typing.mp4
    05:14
  • 00045 7.4 Modelling Preferences Choice.mp4
    20:22
  • 00046 7.5 Principal Components Analysis PCA.mp4
    13:32
  • 00047 7.6 Example Using PCA Factor Analysis for Indicator Creation.mp4
    11:42
  • 00048 Learning objectives.mp4
    00:34
  • 00049 8.1 Set-Up A B Tests--Part 1.mp4
    13:12
  • 00050 8.2 Set-Up A B Tests--Part 2.mp4
    16:33
  • 00051 8.3 Understand Randomization.mp4
    07:02
  • 00052 8.4 Interpret the Results of A B Tests--Part 1.mp4
    16:17
  • 00053 8.5 Interpret the Results of A B Tests--Part 2.mp4
    12:08
  • 00054 8.6 Pitfalls of A B Testing.mp4
    22:05
  • 00055 Product Analytics for Data-Driven Decisions - Summary.mp4
    01:58
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Pearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
    • language english
    • Training sessions 55
    • duration 7:16:11
    • English subtitles has
    • Release Date 2023/11/03