Companies Home Search Profile

Modern Data Analyst: SQL, Python & ChatGPT for Data Analysis

Focused View

Frank Andrade,Cristopher Kevin Gargate Osorio

19:06:11

7 View
  • 1.1 Scripts and Datasets.html
  • 1. Welcome! (+ Resources for the course).html
  • 2. What is SQL MySQL.mp4
    02:06
  • 3. Whats a table.mp4
    01:10
  • 4. Whats a Primary Key.mp4
    02:35
  • 5. Whats a foreign key.mp4
    01:51
  • 1. Section Overview.html
  • 2.1 Link.html
  • 2. How to install MySQL on Windows.mp4
    05:57
  • 3.1 Link.html
  • 3. How to install MySQL on macOS.mp4
    04:40
  • 1. Section Overview.html
  • 2. Data Types.mp4
    04:09
  • 1. Section Overview.html
  • 2. Part 1 - Creating a database and table.mp4
    05:54
  • 3. Part 2-Creating a database and table.mp4
    17:01
  • 4. Importing Data with MySQL.mp4
    08:00
  • 5. The SELECT Command.mp4
    09:45
  • 6. Insert.mp4
    07:39
  • 7. Min.mp4
    08:24
  • 8. Max.mp4
    04:14
  • 9. Group by.mp4
    12:39
  • 10. Where.mp4
    11:22
  • 11. Sum.mp4
    06:56
  • 12. Average.mp4
    07:50
  • 13. Count.mp4
    07:32
  • 14. And.mp4
    05:10
  • 15. Or ..mp4
    06:40
  • 16. In ..mp4
    08:05
  • 17. Like.mp4
    08:26
  • 18. Between.mp4
    08:08
  • 19. Order by.mp4
    11:15
  • 20. Having.mp4
    10:44
  • 21. Update + Set.mp4
    05:48
  • 22. Distinct.mp4
    04:58
  • 1. Section Overview.html
  • 2. Left and Right.mp4
    11:56
  • 3. Length.mp4
    06:43
  • 4. Upper Lower.mp4
    05:57
  • 5. Repeat.mp4
    02:26
  • 6. Replace.mp4
    08:20
  • 7. Trim.mp4
    08:22
  • 8. Cast + Convert.mp4
    05:40
  • 9. Concat.mp4
    06:13
  • 10. Curdate, day, month.mp4
    06:32
  • 11. Date add.mp4
    06:51
  • 1. Temporary Table.mp4
    08:04
  • 2. Joins.mp4
    16:22
  • 3. Subqueries.mp4
    08:52
  • 4. Case.mp4
    07:56
  • 5. Dense Rank.mp4
    07:26
  • 1. Installing Python and Jupyter Notebook through Anaconda.mp4
    03:43
  • 2. Jupyter Notebook Interface.mp4
    10:00
  • 3. Cell Types and Modes in Jupyter Notebook.mp4
    07:35
  • 4. Popular Keyboard Shortcuts in Jupyter Notebook.mp4
    05:03
  • 1. Hello World.mp4
    03:48
  • 2. Data Types.mp4
    08:37
  • 3. Variables.mp4
    07:40
  • 4. Lists.mp4
    24:18
  • 5. Dictionary.mp4
    10:34
  • 6. If Statement.mp4
    06:12
  • 7. For Loop.mp4
    05:42
  • 8. Function.mp4
    07:08
  • 9. Modules.mp4
    03:40
  • 1. Introduction to Pandas.mp4
    06:24
  • 2. How to Create a Dataframe.mp4
    16:23
  • 3. How to show a dataframe head(), tail() and pd.options.display.mp4
    06:48
  • 4. Basic Attributes, Functions and Methods.mp4
    11:50
  • 5. Selecting One Column from a Dataframe.mp4
    05:53
  • 6. Selecting Two or More Columns from a Dataframe.mp4
    05:35
  • 7. Add New Column to a Dataframe (Simple Assignment).mp4
    09:59
  • 8. Add New Column to a Dataframe with assign() and insert().mp4
    06:41
  • 9. Operations in dataframes.mp4
    08:10
  • 10. The value counts() method.mp4
    04:10
  • 11. Sort a DataFrame with the sort values() method.mp4
    09:37
  • 12. The set index() and sort index() methods.mp4
    06:56
  • 13. Rename Columns and Index with rename().mp4
    05:58
  • 1. Filter a Dataframe Based on 1 Condition.mp4
    14:14
  • 2. Creating a Conditional Column from 2 Choices np.where().mp4
    10:29
  • 3. Filter a Dataframe Based on 2 or More Conditions &, .mp4
    12:07
  • 4. Creating a Conditional Column from More Than 2 Choices np.select().mp4
    12:51
  • 5. The isin() Method.mp4
    07:17
  • 6. Find Duplicate Rows with the duplicated() method.mp4
    17:55
  • 7. Drop Duplicate Elements with the drop duplicates() method.mp4
    10:17
  • 8. Get and Count Unique Values with the unique() and nunique() methods.mp4
    03:54
  • 1. loc() vs iloc().mp4
    07:15
  • 2. First Look at The Dataset Setting Index and Selecting Columns.mp4
    05:32
  • 3. Selecting elements by index label with .loc().mp4
    20:20
  • 4. Selecting elements by index position with .iloc().mp4
    13:02
  • 5. Set New Value for a Cell In a Dataframe.mp4
    09:47
  • 6. Drop Rows or Columns from a DataFrame.mp4
    09:36
  • 7. Create Random Sample with the sample Method.mp4
    07:44
  • 8. Filter A DataFrame with the query method.mp4
    12:29
  • 9. The apply() method.mp4
    06:09
  • 10. Lambda function + apply() method.mp4
    17:52
  • 11. Make a Copy of a Dataframe with copy() (Deep Copy vs Shallow Copy).mp4
    07:18
  • 1. Introduction to Pivot Tables in Pandas.mp4
    04:43
  • 2. The pivot() method.mp4
    06:05
  • 3. The pivot table() method.mp4
    08:08
  • 1. First Look at The Dataset and Making Pivot Table.mp4
    09:35
  • 2. Lineplot.mp4
    04:25
  • 3. Barplot.mp4
    07:45
  • 4. Piechart.mp4
    03:41
  • 5. Boxplot.mp4
    03:34
  • 6. Histogram.mp4
    01:29
  • 7. ScatterPlot.mp4
    04:44
  • 8. Save Plot and Export Pivot Table.mp4
    03:06
  • 1. Dataset Overview.mp4
    06:50
  • 2. The agg() method.mp4
    14:50
  • 3. The Split-Apply-Combine Strategy.mp4
    07:09
  • 4. The GroupBy Method.mp4
    13:43
  • 5. The groupby() and agg() method.mp4
    10:58
  • 6. The groupby() and lambda function.mp4
    09:46
  • 7. The filter() method.mp4
    07:37
  • 1. Intro dataset.mp4
    05:38
  • 2. Concatenate Vertically.mp4
    12:04
  • 3. Concatenate Horizontally.mp4
    11:58
  • 4. Inner Joins.mp4
    09:21
  • 5. Full Join and Exclusive Full Join.mp4
    18:31
  • 6. Left Join and Exclusive Left Join.mp4
    24:11
  • 7. Right Join and Exclusive Right Join.mp4
    19:40
  • 1. Dataset Overview.mp4
    03:47
  • 2. Identify Missing Data with the isnull() Method.mp4
    10:28
  • 3. Dealing with Missing Data Remove a column or row with .drop, .dropna or .isnull.mp4
    12:35
  • 4. Dealing with Missing Data Replace NaN by the mean, median, mode with .fillna().mp4
    14:06
  • 5. Extracting data with split() and extract() and changing data type with astype().mp4
    15:44
  • 6. How Identify and Deal with Outliers.mp4
    17:26
  • 7. Dealing with inconsistent capitalization with lower(), upper(), title().mp4
    04:52
  • 8. Remove blank spaces with strip(), lstrip(), and rstrip().mp4
    04:41
  • 9. Replace strings with replace() or sub().mp4
    08:14
  • 1. ChatGPT for Coding.mp4
    10:58
  • 2. ChatGPT for Data Analysis.mp4
    09:54
  • 3. ChatGPT for Automation.mp4
    13:23
  • 4. Automating Web Scraping with GPT-4.mp4
    09:21
  • 5. ChatGPT Code Interpreter.mp4
    06:38
  • 6. How to work with chatgpt code interpreter.mp4
    04:14
  • 7. Code Interterpreter Uploads.mp4
    09:04
  • 8. ChatGPT Code Interpreter - First Look.mp4
    08:28
  • 9. Web Scraping with Code Interpreter.mp4
    12:30
  • 10. Automate Excel Reporting with the Code Interpreter.mp4
    09:07
  • Description


    Data Analyst Course: SQL, Python, NumPy, Pandas, Data Visualization, Cleaning and ChatGPT

    What You'll Learn?


    • Learn SQL to create queries and work with databases
    • Learn Python to collect data, explore data and make visualizations
    • How to use ChatGPT for data analysis
    • Exercises and data analysis projects

    Who is this for?


  • Anyone who wants to become a data analyst
  • Excel analysts who want to learn more powerful tools like SQL, Python
  • Anyone who wants to learn ChatGPT for data analysis
  • What You Need to Know?


  • Internet Access
  • More details


    Description

    Welcome to Modern Data Analyst. The role of the data analyst has evolved and now it’s not enough to know Excel to be a data analyst. In this course, we will learn how to use SQL, Python & ChatGPT for Data Analysis.

    First, we'll learn SQL from scratch. SQL is a programming language that will help us work with data. We’ll use a free database for this course: MySQL. Here are some of the SQL concepts this course covers.

    - Basic SQL commands and clauses (SELECT FROM, WHERE, INSERT, HAVING, UPDATE, etc)

    - Aggregate functions with GROUP BY commands

    - SQL Joins

    - Logical operators

    - Subqueries. temporary tables, rank, etc

    - Projects, exercises, and more!

    Then we’ll learn Python from zero. Python is used for data analysts to collect data, explore data, and make visualizations. Here's what the Python section covers.

    - Python Crash Course: We'll learn all the Python core concepts such as variables, lists, dictionaries, and more.

    - Python for Data Analysis: We'll learn Python libraries used for data analysis such as Pandas and Numpy. We'll use them to do data analysis tasks such as cleaning and preparing data.

    - Python for Data Visualization: We'll learn how to make visualizations with Pandas.

    Finally, we'll learn ChatGPT for data analysis. We’ll learn how to use ChatGPT’s code interpreter to analyze data, extract data from websites, automate Excel reports, and more.

    What makes this course different from the others, and why you should enroll?

    • This is the most updated and complete data analysis course. 3-in-1 bundle (SQL, Python and ChatGPT)

    • You'll learn traditional tools as well as modern tools used in data analysis

    • We'll solve exercises and projects to put into practice the concepts learned

    Join me now and become a data analyst.

    Who this course is for:

    • Anyone who wants to become a data analyst
    • Excel analysts who want to learn more powerful tools like SQL, Python
    • Anyone who wants to learn ChatGPT for data analysis

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Frank Andrade
    Frank Andrade
    Instructor's Courses
    I'm a data scientist and my passion is teaching. I have done it for many years. I have taught the fundamentals of programming and web scraping to hundreds of people including undergraduates and professionals. Also, I share my knowledge on YouTube and Medium to thousands of people every day.I'm looking forward to seeing you in my course. I'll be there for you on every step you make and answer any questions you have!
    Cristopher Kevin Gargate Osorio
    Cristopher Kevin Gargate Osorio
    Instructor's Courses
    Soy Ingeniero Industrial con especialización en Ciencia de Datos. Docente en diversos universidades e institutos en temas relacionados al uso del análisis de datos enfocado a las propuestas de mejora o solución de casos de negocio.Me encanta compartir mis conocimientos de forma directa y práctica de tal forma que lo puedas usarlo en tu formación o implementarlo en tu trabajo
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 132
    • duration 19:06:11
    • Release Date 2024/05/18