Companies Home Search Profile

Data Understanding and Data Visualization with Python

Focused View

AI Sciences

12:16:11

10 View
  • 01.01-about the tutor and ai sciences.mp4
    03:40
  • 01.02-focus of the course.mp4
    04:21
  • 01.03-content of the course.mp4
    07:59
  • 02.01-introduction to strings.mp4
    09:16
  • 02.02-multi-line strings.mp4
    05:50
  • 02.03-indexing strings.mp4
    14:09
  • 02.04-string methods.mp4
    14:56
  • 02.05-string escape sequences.mp4
    10:08
  • 03.01-introduction to data structure.mp4
    06:47
  • 03.02-data structures-defining and indexing.mp4
    06:01
  • 03.03-data structures-insertion and deletion.mp4
    07:29
  • 03.04-data structures-insertion and deletion python practice.mp4
    06:36
  • 03.05-data structures-deep copy or reference and slicing.mp4
    08:25
  • 03.06-data structures-exploring methods using tab completion.mp4
    07:23
  • 03.07-data structures-abstract ways.mp4
    06:32
  • 03.08-data structures-problem solving practice.mp4
    19:28
  • 04.01-introduction to numpy.mp4
    06:49
  • 04.02-numpy dimensions.mp4
    13:51
  • 04.03-numpy shape size and bytes.mp4
    04:40
  • 04.04-numpy arange and random package.mp4
    09:00
  • 04.05-numpy random and reshape.mp4
    10:22
  • 04.06-numpy slicing combined.mp4
    14:05
  • 04.07-numpy masking.mp4
    08:36
  • 04.08-numpy broadcasting and concatenation.mp4
    10:14
  • 04.09-numpy ufuncs and speedtest.mp4
    05:30
  • 04.10-ufuncs add sum and plus operators.mp4
    16:52
  • 04.11-ufuncs subtract power mod.mp4
    11:08
  • 04.12-ufuncs comparisons logical operators.mp4
    15:22
  • 04.13-ufuncs output argument.mp4
    06:57
  • 04.14-numpy playing with images.mp4
    20:22
  • 04.15-numpy knn classifier from scratch.mp4
    28:18
  • 04.16-numpy structured arrays.mp4
    09:06
  • 05.01-introduction to pandas.mp4
    06:58
  • 05.02-pandas series.mp4
    06:23
  • 05.03-pandas dataframe.mp4
    08:50
  • 05.04-pandas missing values.mp4
    06:43
  • 05.05-pandas loc and iloc.mp4
    06:46
  • 05.06-pandas in practice.mp4
    24:22
  • 05.07-pandas group by.mp4
    14:12
  • 05.08-hierarchical indexing.mp4
    09:04
  • 05.09-pandas rolling.mp4
    09:26
  • 05.10-pandas where.mp4
    08:43
  • 05.11-pandas clip.mp4
    05:37
  • 05.12-pandas merge.mp4
    12:45
  • 05.13-pandas pivot table.mp4
    16:16
  • 05.14-pandas strings.mp4
    05:33
  • 05.15-pandas datetime.mp4
    06:48
  • 05.16-pandas hands-on covid-19 data.mp4
    31:05
  • 05.17-pandas hands-on covid-19 data bug fixed.mp4
    02:30
  • 06.01-introduction to matplotlib.mp4
    05:49
  • 06.02-matplotlib multiple plots.mp4
    09:41
  • 06.03-matplotlib colors and styles.mp4
    08:27
  • 06.04-matplotlib colors and styles shortcuts.mp4
    08:02
  • 06.05-matplotlib axis limits.mp4
    11:13
  • 06.06-matplotlib legends labels.mp4
    06:59
  • 06.07-matplotlib set function.mp4
    05:35
  • 06.08-matplotlib markers.mp4
    08:35
  • 06.09-matplotlib markers random plots.mp4
    06:51
  • 06.10-matplotlib scatter plot.mp4
    12:15
  • 06.11-matplotlib contour plot.mp4
    09:12
  • 06.12-matplotlib histograms.mp4
    08:16
  • 06.13-matplotlib subplots.mp4
    10:13
  • 06.14-matplotlib 3d introduction.mp4
    06:02
  • 06.15-matplotlib 3d scatter plots.mp4
    05:02
  • 06.16-matplotlib 3d surface plots.mp4
    08:35
  • 07.01-introduction to seaborn.mp4
    11:03
  • 07.02-seaborn relplot.mp4
    04:25
  • 07.03-seaborn relplot kind line.mp4
    05:14
  • 07.04-seaborn relplot facets.mp4
    09:08
  • 07.05-seaborn catplot.mp4
    05:43
  • 07.06-seaborn heatmaps.mp4
    03:50
  • 08.01-introduction to bokeh.mp4
    04:15
  • 08.02-bokeh multiplots markers.mp4
    06:58
  • 08.03-bokeh multiplots grid plot.mp4
    06:06
  • 09.01-plotly 3d interactive scatter plot.mp4
    07:46
  • 09.02-plotly 3d interactive surface plot.mp4
    05:09
  • 10.01-geographic maps with folium using covid-19 data.mp4
    12:26
  • 11.01-pandas for plotting.mp4
    11:08
  • 9781801078795 Code.zip
  • Description


    Data visualization has gained a lot of traction resulting from an increased focus on data analytics. To be a successful data scientist, data manipulation and wrangling are not enough. Visualizing data to garner insights is an equally important tool in the data science toolkit. Given the myriad types of data that exist, visualization has become an increasingly important topic. This course will equip you with all the skills you need to successfully create insightful visualizations. The course first starts with the fundamentals of Python. Then, the course teaches you how to use libraries such as NumPy, Pandas, Matplotlib, Seaborn, Bokeh, and so on. Additionally, you will learn data manipulation, which is the step prior to visualization. You will also learn how to plot geographical data using Folium. Each module in the course has practical hands-on mini projects, and with the mammoth content, this is one of the most comprehensive courses you will be doing on data visualization in Python. By the end of this course, you have not only learned the theoretical fundamentals of visualizations but also gained essential practical skills to explore this growing domain. The code files and all related files are uploaded on GitHub at: https://github.com/PacktPublishing/Data-Understanding-and-Data-Visualization-with-Python

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    We are a group of experts, PhDs and Practitioners of Artificial Intelligence, Computer Science, Machine Learning, and Statistics. Some of us work in big companies like Amazon, Google, Facebook, Microsoft, KPMG, BCG, and IBM.We decided to produce a series of courses mainly dedicated to beginners and newcomers on the techniques and methods of Machine Learning, Statistics, Artificial Intelligence, and Data Science. Initially, our objective was to help only those who wish to understand these techniques more easily and to be able to start without too much theory and without a long reading. Today we also publish a more complete course on some topics for a wider audience.Our courses have had phenomenal success. Our Courses have helped more than 100,000 students to master AI and Data Science.
    Packt is a publishing company founded in 2003 headquartered in Birmingham, UK, with offices in Mumbai, India. Packt primarily publishes print and electronic books and videos relating to information technology, including programming, web design, data analysis and hardware.
    • language english
    • Training sessions 78
    • duration 12:16:11
    • Release Date 2024/03/16