Companies Home Search Profile

Complete Python for Data Analysis

Focused View

13:20:41

5 View
  • 01-section 1 introduction.mp4
    00:54
  • 02-application download and installation.mp4
    00:39
  • 03-install python on windows.mp4
    02:45
  • 04-installing python on macbook.mp4
    05:02
  • 05-python files.mp4
    00:37
  • 06-section 2-data types and variables.mp4
    00:31
  • 07-what is python.mp4
    03:27
  • 08-data types.mp4
    12:32
  • 09-variables.mp4
    04:59
  • 10-section 3 operators and numbers.mp4
    00:15
  • 11-operators.mp4
    03:34
  • 12-numbers in python.mp4
    02:01
  • 13-string data type.mp4
    04:44
  • 14-section 4 using strings in python.mp4
    00:19
  • 15-string methods.mp4
    14:43
  • 16-string operators.mp4
    05:21
  • 17-section 5 slicing format function and casting.mp4
    00:40
  • 18-slice.mp4
    07:24
  • 19-format function.mp4
    04:42
  • 20-casting.mp4
    04:20
  • 21-bill payment system-project.mp4
    08:36
  • 22-section 6 list data structure.mp4
    00:16
  • 23-list-data structure.mp4
    12:21
  • 24-list methods.mp4
    11:09
  • 25-section 7 control flow.mp4
    00:25
  • 26-if statement.mp4
    06:24
  • 27-guessing game project-part 1.mp4
    09:20
  • 28-while loops.mp4
    08:07
  • 29-guessing game-part 2.mp4
    06:22
  • 30-for loops.mp4
    07:04
  • 31-break and continue statement.mp4
    08:54
  • 32-section 8 tuple data structure.mp4
    00:10
  • 33-tuples-data structure.mp4
    09:49
  • 34-section 9 dictionary data structure.mp4
    00:24
  • 35-dictionary.mp4
    09:11
  • 36-dictionary methods.mp4
    07:15
  • 37-create list inside a dictionary.mp4
    06:59
  • 38-concert ticket project.mp4
    17:12
  • 39-section 10 functions.mp4
    00:18
  • 40-python built-in functions.mp4
    07:23
  • 41-user defined functions.mp4
    15:09
  • 42-variable scope.mp4
    08:06
  • 43-unpack data-args.mp4
    14:14
  • 44-unpack dictionaries-kwargs.mp4
    03:36
  • 45-section 11 series.mp4
    00:25
  • 46-introduction to series.mp4
    02:12
  • 47-create series from list.mp4
    05:27
  • 48-create series from tuple.mp4
    01:40
  • 49-create series from dictionary.mp4
    05:27
  • 50-create series from csv dataset.mp4
    10:09
  • 51-head and tail method.mp4
    02:24
  • 52-count and describe method.mp4
    04:57
  • 53-sort values ( ).mp4
    04:05
  • 54-inplace parameter.mp4
    03:42
  • 55-sort index ( ).mp4
    04:16
  • 56-retrieve records by index position.mp4
    03:06
  • 57-retrieve records by index label.mp4
    07:28
  • 58-retrieve records-get ( ).mp4
    05:23
  • 59-use attributes on series.mp4
    05:10
  • 60-section 12 dataframe i.mp4
    00:22
  • 61-introduction to dataframe.mp4
    02:20
  • 62-create dataframe from list.mp4
    05:22
  • 63-create dataframe from dictionary of list.mp4
    02:23
  • 64-create dataframe from imported file.mp4
    08:00
  • 65-retrieve single column.mp4
    04:56
  • 66-retrieve multiple columns.mp4
    03:43
  • 67-add new column.mp4
    06:38
  • 68-delete column(s).mp4
    03:49
  • 69-find sum of null values.mp4
    02:46
  • 70-drop rows with missing values.mp4
    09:36
  • 71-replace missing values-fillna ( ).mp4
    04:02
  • 72-broadcasting operation.mp4
    07:23
  • 73-count unique occurrences-value count ( ) .mp4
    02:46
  • 74-sort values-sort values ( ).mp4
    06:41
  • 75-sort dataframe by index-sort index ( ).mp4
    01:39
  • 76-remove and replace missing values.mp4
    06:39
  • 77-change data type-astype ( ).mp4
    05:06
  • 78-section 13 dataframe ii.mp4
    00:09
  • 79-optimizing dataset.mp4
    12:23
  • 80-refine dataset by a condition.mp4
    11:23
  • 81-refine dataset by multiple conditions-and condition.mp4
    06:37
  • 82-select specific columns after condition.mp4
    04:08
  • 83-refine dataframe using multiple conditions-or condition.mp4
    05:06
  • 84-retrieve rows having specific values-isin ( ).mp4
    03:59
  • 85-return null and not null values-isnull ( ) and notnull ( ).mp4
    02:31
  • 86-return values within range-between ( ).mp4
    02:42
  • 87-retrieve duplicate records-duplicated ( ).mp4
    08:15
  • 88-delete duplicate records-drop duplicates ( ).mp4
    03:55
  • 89-unique ( ) and nunique ( ).mp4
    04:13
  • 90-section 14 dataframe iii.mp4
    00:06
  • 91-optimize dataset.mp4
    04:34
  • 92-set index ( ) and reset index ( ).mp4
    05:56
  • 93-retrieve rows by index label .loc accessor.mp4
    08:11
  • 94-retrieve rows by index position .iloc accessor.mp4
    05:28
  • 95-return specific index label values.mp4
    04:31
  • 96-change values in a cell.mp4
    03:29
  • 97-change values of unique groups.mp4
    04:42
  • 98-change label or column name-rename ( ).mp4
    04:48
  • 99-delete rows or columns-drop ( ).mp4
    03:11
  • 100-retrieve random sample from dataframe.mp4
    02:50
  • 101-retrieve smallest or largest values.mp4
    03:26
  • 102-rank values-rank ( ).mp4
    06:16
  • 103-create a copy of dataset.mp4
    04:50
  • 104-section 15 manipulating text data.mp4
    00:19
  • 105-optimizing text data.mp4
    04:03
  • 106-change case-upper ( ) lower ( ) title ( ) capitalize ( ).mp4
    04:28
  • 107-remove white spaces-lstrip ( ) rstrip ( ) strip ( ).mp4
    03:54
  • 108-replace characters in a column.mp4
    03:41
  • 109-filter dataframe for specific values-contains ( ).mp4
    04:13
  • 110-split string columns i.mp4
    05:50
  • 111-split string columns ii.mp4
    05:03
  • 112-section 16 multi index in dataframe.mp4
    00:17
  • 113-create multi index.mp4
    07:27
  • 114-sort multi-index.mp4
    04:36
  • 115-retrieve records from multi-index dataframe.mp4
    05:01
  • 116-stack ( ) and unstack ( ).mp4
    01:57
  • 117-aggregate values using pivot table ( ).mp4
    10:21
  • 118-section 17 groupby object.mp4
    00:16
  • 119-groupby object i.mp4
    06:29
  • 120-groupby object ii.mp4
    06:15
  • 121-get group ( ).mp4
    02:55
  • 122-group by multiple columns.mp4
    03:08
  • 123-pass different operation-agg ( ).mp4
    04:26
  • 124-for loop and groupby object.mp4
    11:10
  • 125-section 18 data relationship.mp4
    11:16
  • 126-what is data relationship .mp4
    00:19
  • 127-data normalization.mp4
    07:27
  • 128-introduction to join.mp4
    04:53
  • 129-inner join i.mp4
    04:55
  • 130-inner join ii.mp4
    09:05
  • 131-left join.mp4
    08:25
  • 132-right join.mp4
    02:25
  • 133-outer join.mp4
    02:28
  • 134-merge more than 2 dataframes.mp4
    10:59
  • 135-many to many data relationship.mp4
    12:07
  • 136-left on ( ) and right on ( ).mp4
    06:07
  • 137-combine dataframes-pd.concat ( ).mp4
    07:25
  • 138-section 19 date and time.mp4
    00:14
  • 139-working with date and time.mp4
    08:21
  • 140-pandas timestamp object.mp4
    05:52
  • 141-to datetime ( ).mp4
    08:20
  • 142-pd.date range ( ) i.mp4
    06:40
  • 143-pd.date range ( ) ii.mp4
    03:57
  • 144-dt.accessor.mp4
    12:26
  • 145-format datetime objects-dt.strftime ( ) i.mp4
    07:04
  • 146-dt.strftime ( ) ii.mp4
    04:26
  • 147-section 20 import and export dataset.mp4
    00:21
  • 148-import dataset from url.mp4
    07:07
  • 149-export dataset as files.mp4
    07:41
  • 150-section 21 conclusion.mp4
    00:26
  • 151-next steps.mp4
    08:12
  • Python Files.zip.zip
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Skillshare is an online learning community based in the United States for people who want to learn from educational videos. The courses, which are not accredited, are only available through paid subscription.
    • language english
    • Training sessions 151
    • duration 13:20:41
    • Release Date 2024/03/01