Companies Home Search Profile

Testing and Monitoring Machine Learning Model Deployments

Focused View

7:27:53

8 View
  • 001 Course Curriculum Overview.mp4
    02:35
  • 002 Course Requirements.mp4
    01:36
  • 003 How to Approach This Course (Important).mp4
    03:26
  • 004 All Notes & Slides For This Course.html
  • 004 Complete-Course-Notes.pdf
  • 004 all-course-slides.pdf
  • 005 FAQ I would like to learn more about the topics not covered.html
  • 001 Deploying a Model to Production.mp4
    08:31
  • 002 Course Scenario Predicting House Sale Price.mp4
    09:27
  • 003 Setup A Python Installation (Important).mp4
    03:47
  • 004 Setup B Git and Github Setup (Advanced users can skip).mp4
    03:02
  • 005 Course Github Repo & Data.mp4
    02:38
  • 006 Download dataset and Github repo links and guidelines.html
  • 007 Setup C Jupyter Notebook Setup.mp4
    02:13
  • 008 Setup D Install Notebook Dependencies.mp4
    02:19
  • 009 Introduction to the Dataset & Model Pipeline.mp4
    13:21
  • 010 ML System Lifecycle.mp4
    05:51
  • 011 Additional Links and Resources.html
  • 001 Section Overview.mp4
    00:48
  • 002 Testing Focus in This Course.mp4
    01:26
  • 003 Why Test.mp4
    03:44
  • 004 Testing Theory.mp4
    03:47
  • 005 Testing Machine Learning Systems (Important).mp4
    06:31
  • 006 Setup A Install Requirements.html
  • 007 Wrap Up.mp4
    00:26
  • 001 Section Overview.mp4
    00:45
  • 002 Code Conventions.mp4
    02:26
  • 003 Pytest.mp4
    11:49
  • 004 Setup - Kaggle Data.mp4
    03:22
  • 005 Download the data set - Text Summary.html
  • 006 Setup 2 - Tox.mp4
    05:47
  • 007 Troubleshooting Tox on Windows.mp4
    01:18
  • 008 Troubleshooting Tox on Windows II.html
  • 009 Code Base Overview.mp4
    13:41
  • 010 Preprocessing & Feature Engineering Unit Testing Theory - Why Do This.mp4
    03:24
  • 011 Temporary Fix - important.html
  • 012 Preprocessing & Feature Engineering Unit Testing.mp4
    11:06
  • 013 Quick note on git hygiene for the course.html
  • 014 Model Config Unit Testing Theory - Why Do This.mp4
    03:00
  • 015 Model Config Unit Testing.mp4
    09:57
  • 016 Input Data Testing Theory - Why Do This.mp4
    03:06
  • 017 Input Data Unit Testing.mp4
    08:35
  • 018 Model Quality Unit Testing Theory - Why Do This.mp4
    02:19
  • 019 Model Quality Unit Testing.mp4
    10:10
  • 020 Quick Lecture on Tooling Improvements.mp4
    02:41
  • 021 Wrap Up.mp4
    01:41
  • 001 Section Overview.mp4
    00:45
  • 002 Quick Docker Recap.mp4
    06:09
  • 003 Why Use Docker.mp4
    07:24
  • 004 Introduction to Docker Compose.mp4
    04:28
  • 005 Docker & Docker Compose Installation.mp4
    05:56
  • 006 Windows Specific Docker Issue.mp4
    03:48
  • 007 Important Requirements Fix.html
  • 008 Docker Space Consumption Tips.html
  • 001 Section Overview.mp4
    00:40
  • 002 API Conceptual Guide.mp4
    02:16
  • 003 Overview of the Codebase.mp4
    06:47
  • 004 Using our Open API Spec Part 1.mp4
    01:55
  • 005 WINDOWS SPECIFIC SETUP.html
  • 006 Using our Open API Spec Part 2.mp4
    02:56
  • 007 Integration Testing Theory.mp4
    01:52
  • 008 WORK AROUND LECTURE - 32 bit Operating Systems.html
  • 009 Integration Testing Hands-On Code.mp4
    10:21
  • 010 A note on benchmark integration tests.mp4
    01:33
  • 001 Section Overview.mp4
    00:32
  • 002 Differential Testing Theory.mp4
    03:19
  • 003 Differential Testing Implementation.mp4
    07:37
  • 001 Section Overview.mp4
    00:44
  • 002 Shadow Mode Theory.mp4
    04:23
  • 003 Testing Models in Production.mp4
    09:32
  • 004 Tests in Shadow Deployments.mp4
    15:08
  • 005 Code Overview - DB Setup.mp4
    13:13
  • 006 WINDOWS port mapping.html
  • 007 Gotcha breaking changes in sqlalchemy utils.html
  • 008 Setup Tests for Shadow Mode.mp4
    11:40
  • 009 Shadow Mode - Asynchronous Implementation.mp4
    04:25
  • 010 Populate Database with Shadow Predictions.mp4
    05:22
  • 011 Jupyter Demo - Setup.mp4
    05:02
  • 012 Jupyter Demo - Tests in Shadow Mode.mp4
    14:18
  • 001 Section Overview.mp4
    01:36
  • 002 Why Monitor.mp4
    05:34
  • 003 Monitoring Theory.mp4
    08:29
  • 004 Metrics for Machine Learning Systems.mp4
    06:03
  • 005 Prometheus & Grafana Overview.mp4
    06:42
  • 006 [WINDOWS ONLY] Additional Setup.mp4
    02:28
  • 007 Basic Prometheus Setup - Hands-on.mp4
    05:33
  • 008 Adding Metrics - Hands-on.mp4
    08:22
  • 009 Adding Grafana - Hands-on.mp4
    07:21
  • 010 Infrastructure Metrics - Hands-on.mp4
    06:44
  • 011 Adding Metrics Monitoring to Our Example Project.mp4
    07:30
  • 012 Creating an ML System Grafana Dashboard.mp4
    15:44
  • 001 Monitoring Logs for ML - Theory.mp4
    04:03
  • 002 The Elastic Stack (Formerly ELK) - Overview.mp4
    04:41
  • 003 Kibana Hands-on Exercise.mp4
    09:43
  • 004 Integrating Kibana into The Example Project.mp4
    09:36
  • 005 Setting Up a Kibana Dashboard for Model Inputs.mp4
    14:03
  • 001 Course Conclusion.mp4
    01:01
  • 002 Congratulations.html
  • 001 Bonus Lecture - There is more.html
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 80
    • duration 7:27:53
    • English subtitles has
    • Release Date 2024/02/15