Companies Home Search Profile

TensorFlow Developer Certificate Exam Prep

Focused View

Chris Behrens

6:33:06

72 View
  • 001 Introduction to Machine Learning.txt
  • 001 Introduction to Python Development.txt
  • 001 Machine Learning for Absolute Beginners.txt
  • 001 Using Pythons Math Science and Engineering Libraries.txt
  • 001 What You Need to Know before Starting This Course.mp4
    03:49
  • 002 Course Overview.mp4
    04:44
  • 002 Study Guide PDF.pdf
  • 003 Labs and Practice Exam.mp4
    01:42
  • 004 About the Architect.mp4
    02:03
  • 004 Connect with Adam on LinkedIn.txt
  • 004 Connect with Adam on Twitter.txt
  • 001 Install PyCharm.mp4
    07:38
  • 001 PyCharm Download.txt
  • 001 Python 3.8.txt
  • 001 TensorFlow Developer Certificate Exam Environment Setup Guide.pdf
  • 002 Set Up PyCharm.mp4
    08:07
  • 002 TensorFlow Developer Certificate Exam Environment Setup Guide.pdf
  • 001 Introducing the Basics of TensorFlow.mp4
    00:37
  • 002 What Is a Tensor.mp4
    03:18
  • 003 Understanding Rank 0 Tensors.mp4
    02:27
  • 004 Understanding Rank 1 Tensors.mp4
    04:31
  • 005 Understanding Rank 2 Tensors.mp4
    04:37
  • 006 Understanding Rank 3 Tensors and Beyond.mp4
    05:54
  • 007 How Does a Tensor Flow.mp4
    08:58
  • 008 Keras.mp4
    07:12
  • 009 Reviewing the TensorFlow Basics.mp4
    01:07
  • 001 Introducing Neural Nets in TensorFlow.mp4
    02:39
  • 002 Deep Neural Network (DNN).mp4
    08:02
  • 002 Dense Layer.txt
  • 002 Universal Approximation Theorem.txt
  • 003 AlexNet.pdf
  • 003 Conv1D Layer.txt
  • 003 Conv2D Layer.txt
  • 003 Convolutions.mp4
    10:21
  • 003 Sobel Edge Detection Filter.txt
  • 004 AvgPool1D.txt
  • 004 AvgPool2D.txt
  • 004 MaxPool1D.txt
  • 004 MaxPool2D.txt
  • 004 Pooling.mp4
    04:12
  • 005 Convolutional Neural Network (CNN).mp4
    03:54
  • 005 Flatten Layer.txt
  • 006 Recurrent Neural Network (RNN).mp4
    13:09
  • 007 Loss Functions.mp4
    10:48
  • 007 TensorFlow Loss Functions.txt
  • 008 Adam.pdf
  • 008 List of TensorFlow optimizers.txt
  • 008 Optimizers.mp4
    05:52
  • 008 RMSProp.pdf
  • 008 Stochastic Gradient Descent.pdf
  • 009 Activation Functions.mp4
    04:30
  • 010 Neural Network Review.mp4
    01:45
  • 001 Data In Overview.mp4
    03:12
  • 002 Concrete Slump Test Dataset.txt
  • 002 Concrete Slump Test Wikipedia.txt
  • 002 Reading CSV.mp4
    10:00
  • 002 csv Module.html
  • 002 urllib.html
  • 003 NOAA Climate At A Glance Yearly Precipitation.txt
  • 003 Reading JSON.mp4
    09:20
  • 003 json Module.html
  • 003 urllib.html
  • 004 Fashion MNIST Database.txt
  • 004 ImageDataGenerator.txt
  • 004 Keras get file Function.txt
  • 004 Preprocessed FMNIST Test Data.txt
  • 004 Reading Images.mp4
    13:37
  • 005 Keras text dataset from directory.txt
  • 005 Large Movie Reviews.txt
  • 005 Large Movie Review Dataset.txt
  • 005 Reading Plain Text.mp4
    10:36
  • 005 TensorFlow TextLineDataset.txt
  • 005 Tiny Frankenstein Dataset.txt
  • 006 TensorFlow Dataset API.txt
  • 006 Using the Dataset API.mp4
    11:31
  • 007 Dataset API Map Function.txt
  • 007 Reading TFRecord.mp4
    07:17
  • 007 TFRecordDataset.txt
  • 007 TFRecordWriter.txt
  • 007 parse tensor Function.txt
  • 007 serialize tensor Function.txt
  • 001 CIFAR-10 TensorFlow Datasets.txt
  • 001 Image Data Wrangling.mp4
    08:35
  • 001 TensorFlow Datasets API Split.txt
  • 002 Building an Image Classification Model.mp4
    12:59
  • 002 EarlyStopping Callback.txt
  • 002 ModelCheckpoint Callback.txt
  • 002 TensorFlow Metrics.txt
  • 003 Evaluating the Image Classification Model.mp4
    12:29
  • 003 Keras load model Function.txt
  • 003 Model.txt
  • 004 Dropout Layer.txt
  • 004 ImageDataGenerator Flow Method.txt
  • 004 Improving the Image Classification Model.mp4
    15:32
  • 004 Papers With Code CIFAR-10 Leaderboard.txt
  • 001 Series and Sequence Overview.mp4
    00:48
  • 002 Dataset API Window Function.txt
  • 002 Metro Interstate Traffic Volume UCI ML Repository.txt
  • 002 Series and Sequence Data Wrangling.mp4
    15:16
  • 003 Building a Series and Sequence Model.mp4
    14:26
  • 003 Conv1D Layer.txt
  • 003 LSTM Layer.txt
  • 003 Mean Squared Error Loss Function.txt
  • 004 Evaluating the Series and Sequence Model.mp4
    08:54
  • 004 load model Function.txt
  • 005 Adam Optimizer.txt
  • 005 Improving Series and Sequence Models.mp4
    12:26
  • 005 Mean Absolute Percentage Error Loss Function.txt
  • 005 Normalization Strategies.txt
  • 005 Perfectly Spherical Cows.txt
  • 005 tf.txt
  • 001 Introducing Natural Language Processing.mp4
    04:04
  • 002 Large Movie Review Dataset.txt
  • 002 Natural Language Data Wrangling.mp4
    10:38
  • 002 Tokenizer.txt
  • 002 pad sequences Function.txt
  • 003 Data Wrangling in a Natural Language Processing Model.mp4
    07:56
  • 003 Embedding Layer.txt
  • 004 Bidirectional Layer.txt
  • 004 Building a Natural Language Processing Model.mp4
    12:31
  • 004 Embedding Layer.txt
  • 005 Evaluating the NLP Model.mp4
    12:51
  • 005 Layer Attributes.txt
  • 005 Model Attributes.txt
  • 006 BERT Research Paper.txt
  • 006 ELMo Research Paper.txt
  • 006 GPT-3 Research Paper.txt
  • 006 GloVe Global Vectors for Word Representation.txt
  • 006 Improving the NLP Model.mp4
    15:14
  • 006 fastText.txt
  • 007 NLP Review.mp4
    03:14
  • 001 Available Resources.mp4
    07:19
  • 001 Google Colab.txt
  • 001 TensorFlow Datasets Catalog.txt
  • 001 TensorFlow Documentation.txt
  • 001 TensorFlow YouTube channel.txt
  • 001 UC Irvine Machine Learning Repository.txt
  • 002 Taking the Exam.mp4
    05:43
  • 002 TensorFlow Developer Certificate.txt
  • 003 ACG Community Discord.txt
  • 003 Exam Tips.mp4
    04:42
  • 001 Course Summary.mp4
    05:26
  • 002 Community Discord.txt
  • 002 Connect with Adam on LinkedIn.txt
  • 002 Connect with Adam on Twitter.txt
  • 002 Kaggle.txt
  • 002 TensorFlow Datasets Catalog.txt
  • 002 UCI Machine Learning Repository.txt
  • 002 Whats Next.mp4
    04:34
  • Description


    TensorFlow Developer Certificate Exam Prep

    What You'll Learn?


      Do you want to learn more about machine learning? Do you want to code your own machine learning projects? Do you want to get certified in one of the most popular machine learning frameworks? This course is for you! TensorFlow is a fantastic tool for both beginners and experts in machine learning. In this course, we will build up our understanding of TensorFlow and neural networks from first principles. What is a tensor? How does it flow? How can you use these tools to teach machines? Once we're comfortable with the basic building blocks, we'll create models to explore the three main areas covered by the TensorFlow Developer Exam: Computer Vision, Sequence Forecasting, and Natural Language Processing. After you've built models along with me, you'll have the opportunity to practice your skills on similar problems in our labs! Come jump start your machine learning understanding and your career!

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Chris Behrens
    Chris Behrens
    Instructor's Courses
    A Cloud Guru is an online training platform for people interested in Information Technology. Most of the courses offered prepare students to take certification exams for the three major cloud providers.
    • language english
    • Training sessions 53
    • duration 6:33:06
    • English subtitles has
    • Release Date 2023/12/10