Companies Home Search Profile

Spark Ray and Python for Scalable Data Science

Focused View

7:01:38

122 View
  • 1 - Spark, Ray, and Python for Scalable Data Science - Introduction.mp4
    01:58
  • 2 - Topics.mp4
    00:42
  • 3 - 1.1 Introduction and Materials.mp4
    03:30
  • 4 - 1.2 The Data Science Process.mp4
    05:02
  • 5 - 1.3 A Brief Historical Diversion.mp4
    09:55
  • 6 - 1.4 Distributed Systems Primer.mp4
    09:33
  • 7 - 1.5 Python Distributed Computing Frameworks.mp4
    06:22
  • 8 - 1.6 The What and Why of Spark.mp4
    07:33
  • 9 - 1.7 The Spark Platform.mp4
    04:29
  • 10 - 1.8 Spark versus Ray.mp4
    06:22
  • 11 - Topics.mp4
    00:47
  • 12 - 2.1 Course Coding Setup.mp4
    07:23
  • 13 - 2.2 Your First PySpark Job.mp4
    20:48
  • 14 - 2.3 Introduction to RDDs.mp4
    06:33
  • 15 - 2.4 Transformations versus Actions.mp4
    15:31
  • 16 - 2.5 RDD Deep Dive.mp4
    11:22
  • 17 - 2.6 The Spark Execution Context.mp4
    05:54
  • 18 - 2.7 Spark versus Hadoop.mp4
    05:56
  • 19 - 2.8 Spark Application Lifecycle.mp4
    16:53
  • 20 - Topics.mp4
    00:56
  • 21 - 3.1 Introduction to Exploratory Data Analysis.mp4
    07:36
  • 22 - 3.2 A Quick Tour of Jupyter Notebooks.mp4
    14:21
  • 23 - 3.3 Parsing Data at Scale.mp4
    26:47
  • 24 - 3.4 Spark DataFrames - Integration into Existing Workflows.mp4
    10:35
  • 25 - 3.5 Scaling Exploratory Data Analysis with Spark.mp4
    13:53
  • 26 - 3.6 Making Sense of Data - Summary Statistics and Data Visualization.mp4
    11:47
  • 27 - 3.7 Working with Text - Introduction to NLP.mp4
    09:35
  • 28 - 3.8 Tokenization and Vectorization with MLlib.mp4
    08:58
  • 29 - Topics.mp4
    00:38
  • 30 - 4.1 The What and Why of Ray.mp4
    06:44
  • 31 - 4.2 The Ray Programming Model.mp4
    09:17
  • 32 - 4.3 Parallelizing Functions with Ray Tasks.mp4
    15:31
  • 33 - 4.4 Asynchronous Programming with Actors.mp4
    15:21
  • 34 - 4.5 Cellular Automata and the Game of Life.mp4
    09:10
  • 36 - Topics.mp4
    00:53
  • 37 - 5.1 Introduction to Model Evaluation.mp4
    08:31
  • 38 - 5.2 Serializing Data for Machine Learning Applications.mp4
    07:08
  • 39 - 5.3 Cross Validation with scikit-learn.mp4
    09:14
  • 40 - 5.4 Strategies for Tuning Machine Learning Models.mp4
    10:45
  • 41 - 5.5 Grid Search in Python.mp4
    10:59
  • 42 - 5.6 Distributed Hyperparameter Optimization with Ray Tune.mp4
    11:42
  • 43 - 5.7 Resource Efficient Search with Principled Early Stopping.mp4
    13:24
  • 44 - 5.8 Diving Deeper into Ray, Internals.mp4
    04:47
  • 45 - 5.9 Serving Machine Learning Models.mp4
    09:12
  • 46 - 5.10 Deploying AI Applications with Ray Serve.mp4
    16:48
  • 47 - 5.11 Monitoring Model Performance in Production.mp4
    09:34
  • 48 - Spark, Ray, and Python for Scalable Data Science - Summary.mp4
    00:59
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Pearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
    • language english
    • Training sessions 47
    • duration 7:01:38
    • Release Date 2023/11/04