Companies Home Search Profile

About R Learn More

The R programming language is a powerful open source platform designed for heavy data analytics. It is a popular language with data scientists, statisticians, and business analysts for its data analysis and visualization capabilities. R is also used extensively in machine learning, the foundational concept behind AI. R training can familiarize you with the concepts and methods R applies to artificial intelligence and analytics.

Frequently asked questions about R

The R programming language was created specifically for statistical programming. Many find it useful for data handling, cleaning, analysis, and representation. R is also a popular language for data science projects. Much of the data used for data science can be messy and complex. The programming language has features and libraries available geared toward cleaning up unorganized data and making complex data structures easier to handle that can't be found in other languages. It also provides powerful data visualization tools to help data scientists find patterns in large sets of data and present the results in expressive reports. Machine learning is another area where the R language is useful. R gives developers an extensive selection of machine learning libraries that will help them find trends in data and predict future events.
R is a popular programming language for data science, business intelligence, and financial analysis. Academic, scientific, and non-profit researchers use the R language to glean answers from data. R is also widely used in market research and advertising to analyze the results of marketing campaigns and user data. The language is used in quantitative analysis, where its data analysis capabilities give financial experts the tools they need to manage portfolios of stocks, bonds, and other assets. Data scientists use R in many industries to turn data into insights and predict future trends with its machine learning capabilities. Data analysts use R to extract data, analyze it, and turn it into reports that can help enterprises make better business decisions. Data visualization experts use R to turn data into visually appealing graphs and charts.
Whether R is hard to learn depends on your experience. After all, R is a programming language designed for mathematicians, statisticians, and business analysts who may have no coding experience. For some beginning users, it is relatively simple to learn R. It can have a learning curve if you are a business analyst who is only familiar with graphical user interfaces since R is a text-based programming language. But compared to other programming languages, users usually find R easier to understand. R also may have an unfamiliar syntax for programmers who are used to other programming languages, but once they learn the syntax, the learning process becomes more straightforward. Beginners will also find that having some knowledge of mathematics, statistics, and probabilities makes learning R easier.
Python and R are two of today's most popular programming tools. When deciding between Python and R, you need to think about your specific needs. On one hand, Python is relatively easy for beginners to learn, is applicable across many disciplines, has a strict syntax that will help you become a better coder, and is fast to process large datasets. On the other hand, R has over 10,000 packages for data manipulation, is capable of easily making publication-quality graphics, boasts superior capability for statistical modeling, and is more widely used in academia, healthcare, and finance.