Companies Home Search Profile

R Programming for Data Science

Focused View

Syed Mohiuddin

7:44:58

25 View
  • 1. Introduction.mp4
    02:17
  • 2. What is R .mp4
    02:08
  • 3. Why Learn R .mp4
    01:42
  • 4. Features of R Language.mp4
    02:03
  • 5. Importance of R in Data Science.mp4
    01:55
  • 6. Advantages of using R.mp4
    00:35
  • 7. Applications of R Programming.mp4
    02:08
  • 8. Career Opportunities and Job Roles.mp4
    01:27
  • 1. Installing R Software.mp4
    04:34
  • 2. Installing RStudio.mp4
    03:12
  • 3. Look around RStudio Interface.mp4
    09:08
  • 4. Help & Examples Facility for R Features and Functions.mp4
    02:51
  • 5. Changing Look and Feel of RStudio (Optional).mp4
    01:40
  • 6. Some General Functions Good to Know.mp4
    04:39
  • 7.1 Source Code WitingFirst.R.html
  • 7. Writing R Program using RGui.mp4
    04:14
  • 8. Writing R Program using RStudio.mp4
    04:21
  • 9.1 Source Code Comments.R.html
  • 9. Using Comments in R Scripts.mp4
    01:37
  • 1. Using R for Arithmetics.mp4
    03:27
  • 2.1 Source Code BasicComputation.R.html
  • 2. Using Mathematical Functions.mp4
    11:00
  • 3.1 Source Code Variables.R.html
  • 3. Variables.mp4
    08:19
  • 4. Keywords or Reserved Words.mp4
    01:32
  • 5. Simple Program to Compute Interest.mp4
    04:45
  • 6.1 Source Code VariableAssignment.R.html
  • 6. Variable Assignments.mp4
    04:50
  • 7. Displaying Output.mp4
    06:42
  • 8. Reading Input.mp4
    06:31
  • 9. Qiuz.html
  • 10. Quiz.html
  • 1. Statically and Dynamically Typed Languages.mp4
    03:25
  • 2.1 Source Code DataTypes.R.html
  • 2. Atomic Data Types.mp4
    03:42
  • 3. Numeric Type.mp4
    03:56
  • 4. Integer Type.mp4
    04:03
  • 5. Complex Type.mp4
    02:19
  • 6. Logical Type.mp4
    03:57
  • 7. Character Type.mp4
    05:34
  • 8. Type Conversions.mp4
    01:32
  • 9. Conversion to Numeric Type.mp4
    02:40
  • 10. Conversion to Integer Type.mp4
    03:00
  • 11. Conversion to Complex Type.mp4
    02:58
  • 12. Conversion to Logical Type.mp4
    03:45
  • 13. Conversion to Character Type.mp4
    01:52
  • 1.1 Source Code RelationalOperators.R.html
  • 1. Relational Operators.mp4
    03:46
  • 2.1 Source Code LogicalOperaotors.R.html
  • 2. Logical Operators.mp4
    04:15
  • 1.1 Source Code CreatingVectors.R.html
  • 1. Creating Vectors.mp4
    14:54
  • 2.1 Source Code VectorIndexing.R.html
  • 2. Subsetting Vectors.mp4
    10:03
  • 3.1 Source Code MatchingOperator.R.html
  • 3. Matching Operator.mp4
    02:55
  • 4.1 Source Code VectorArithmetic.R.html
  • 4. Vector Arithmetic.mp4
    05:36
  • 5.1 Source Code VectorArithmetic.R.html
  • 5. Vector Methods & Operations.mp4
    03:27
  • 6.1 Source Code ImplicitExplicitCoercion.R.html
  • 6. Implicit & Explicit Coercion.mp4
    05:15
  • 7.1 Source Code LogicalVectors.R.html
  • 7. Logical Vectors.mp4
    07:35
  • 8.1 Source Code Mathematical.R.html
  • 8. Mathematical Functions.mp4
    07:39
  • 9.1 Source Code RandomNumbers.R.html
  • 9. Generating Random Numbers.mp4
    01:43
  • 10.1 Source Code Sequences.R.html
  • 10. Sequences.mp4
    09:39
  • 11.1 Source Code Repitition.R.html
  • 11. Replicate.mp4
    03:42
  • 12. Quiz.html
  • 1.1 Source Code CreatingMatrices.R.html
  • 1. Creating Matrix.mp4
    06:58
  • 2.1 Source Code Usingdiagfunction.R.html
  • 2. Using diag() Function.mp4
    03:21
  • 3.1 Source Code NamingRowsColumns.R.html
  • 3. Naming Rows and Columns of Matrix.mp4
    03:15
  • 4.1 Source Code MatrixIndexing.R.html
  • 4. Subsetting Matrix.mp4
    07:56
  • 5.1 Source Code RowColBinding.R.html
  • 5. Martix rbind() and cbind().mp4
    05:21
  • 6.1 Source Code MatrixOperations.R.html
  • 6. Matrix Operations.mp4
    04:48
  • 7.1 Source Code MatrixApply.R.html
  • 7. Matrix Specific Function.mp4
    04:01
  • 8. Quiz.html
  • 1.1 Source Code CreatingLists.R.html
  • 1. Creating Lists.mp4
    05:37
  • 2.1 Source Code ListIndexing.R.html
  • 2. Subsetting or Slicing List.mp4
    05:08
  • 3.1 Source Code NamingLists.R.html
  • 3. Naming List & Subset Operator.mp4
    02:56
  • 4.1 Source Code ListConcatenation.R.html
  • 4. Lists Concatenation.mp4
    02:32
  • 5. Quiz.html
  • 1.1 Source Code Factors.R.html
  • 1. Factors.mp4
    02:41
  • 1. What are Data Frames.mp4
    01:54
  • 2.1 Source Code CreatingDataframes.R.html
  • 2. Creating Data Frames.mp4
    03:56
  • 3.1 Source Code DataFrameIndexing.R.html
  • 3. Subseting Data Frame.mp4
    07:14
  • 4.1 Source Code Dataframesubset.R.html
  • 4. Data Frame subset() function.mp4
    05:15
  • 5.1 Source Code Dataframerbindcbind.R.html
  • 5. Data Frame rbind() and cbind() functions.mp4
    04:23
  • 6.1 Source Code dataframeedit.R.html
  • 6. Data Frame edit() function.mp4
    03:09
  • 7.1 Source Code MissingValues.R.html
  • 7. Missing Data in Data Frames.mp4
    09:01
  • 8. Quiz.html
  • 1. Control Structures.mp4
    01:32
  • 2.1 Source Code ifelse.R.html
  • 2. if, if-else and else-if statements.mp4
    06:52
  • 3.1 Source Code ifelsefunction.R.html
  • 3. ifelse() function.mp4
    03:32
  • 4.1 Source Code forloop.R.html
  • 4. for Loop.mp4
    05:10
  • 5.1 Source Code whileloop.R.html
  • 5. while Loop.mp4
    05:00
  • 6.1 Source Code repeatloop.R.html
  • 6. repeat Loop.mp4
    04:56
  • 7.1 Source Code breaknext.R.html
  • 7. break & next statement.mp4
    03:18
  • 8. Quiz.html
  • 1.1 Source Code Functions.R.html
  • 1. Functions.mp4
    06:15
  • 2.1 Source Code DefaultArguments.R.html
  • 2. Default and Named Arguments.mp4
    08:34
  • 3.1 Source Code LazyFunctions.R.html
  • 3. Lazy Evaluation.mp4
    01:40
  • 4.1 Source Code ReturningMultipleValues.R.html
  • 4. Functions Returning Multiple Values.mp4
    02:31
  • 5.1 Source Code InlineFunctions.R.html
  • 5. Inline Functions.mp4
    01:53
  • 1.1 Dataset data.txt.html
  • 1.2 Dataset datadollar.txt.html
  • 1.3 Dataset dataspace.txt.html
  • 1.4 Source Code importdatatable.R.html
  • 1. Import Data from Text Files.mp4
    04:40
  • 2.1 Dataset data.csv.html
  • 2.2 Source Code importdatacsv.R.html
  • 2. Import Data from CSV Files.mp4
    01:58
  • 3.1 Dataset chicago.rds.html
  • 3.2 Source Code ImportRDS.R.html
  • 3. Import Data from RDS Files.mp4
    01:40
  • 4.1 Source Code ImportInternet.R.html
  • 4. Import Data from Internet.mp4
    02:25
  • 5.1 Source Code ImportClipboard.R.html
  • 5. Import Data from Clipboard.mp4
    02:44
  • 6.1 Source Code ExportingDataCSV.R.html
  • 6. Exporting Data to CSV Files.mp4
    02:58
  • 7. Quiz.html
  • 1. Installing dplyr Package.mp4
    02:25
  • 2.1 Dataset murders.csv.html
  • 2.2 Source Code dplyrselect.R.html
  • 2. dplyr select() - Select Columns of Data Frame.mp4
    06:57
  • 3.1 Dataset murders.csv.html
  • 3.2 Source Code dplyrfilter.R.html
  • 3. dplyr filter() - Extract Rows from Data Frame.mp4
    03:24
  • 4.1 Dataset murders.csv.html
  • 4.2 Source Code dplyrarrange.R.html
  • 4. dplyr arrange() - Sort or Reorder rows of Data Frame.mp4
    03:52
  • 5.1 Dataset murders.csv.html
  • 5.2 Source Code dplyrrename.R.html
  • 5. dplyr rename() - Renaming Columns of Data Frame.mp4
    03:52
  • 6.1 Dataset murders.csv.html
  • 6.2 Source Code dplyrmutate.R.html
  • 6. dplyr mutate() - Mutate Data Frames.mp4
    03:24
  • 7.1 Dataset murders.csv.html
  • 7.2 Source Code dplyrgroupby.R.html
  • 7. dplyrgroup by() - Generate Summary Statistics.mp4
    02:27
  • 8.1 Dataset murders.csv.html
  • 8.2 Source Code dplyrpipelineoperator.R.html
  • 8. dplyr %% - Pipeline Operator.mp4
    04:24
  • 1.1 Dataset murdersmini.csv.html
  • 1.2 Source Code BarPlot.R.html
  • 1. Bar Plots.mp4
    04:57
  • 2.1 Dataset murdersmini.csv.html
  • 2.2 Source Code HorizontalBarPlots.R.html
  • 2. Horizontal Bar Plots.mp4
    03:08
  • 3.1 Dataset GEStock.csv.html
  • 3.2 Source Code Histogram.R.html
  • 3. Histograms.mp4
    03:27
  • 4.1 Dataset murdersmini.csv.html
  • 4.2 Source Code ScatterPlots.R.html
  • 4. Scatter Plots.mp4
    02:30
  • 5.1 Dataset GEStock.csv.html
  • 5.2 Dataset murders.csv.html
  • 5.3 Source Code LinePlots.R.html
  • 5. Line Plots.mp4
    01:13
  • 6.1 Dataset population.csv.html
  • 6.2 Source Code BoxPlot.R.html
  • 6. Box Plots.mp4
    02:26
  • 7.1 Dataset murdersmini.csv.html
  • 7.2 Source Code StackedBarPlots.R.html
  • 7. Stacked Bar Plots.mp4
    06:43
  • 8.1 Dataset murdersmini.csv.html
  • 8.2 Source Code MultiplePlots.R.html
  • 8. Multiple Plots in a Layout.mp4
    07:13
  • 1.1 Dataset GEStock.csv.html
  • 1.2 Dataset IBMStock.csv.html
  • 1.3 Source Code LoadingDatasetNA.R.html
  • 1. Exploring Stock Prices Datasets.mp4
    05:00
  • 2.1 Dataset GEStock.csv.html
  • 2.2 Dataset IBMStock.csv.html
  • 2.3 Source Code MinMaxRange.R.html
  • 2. Find Highest and Lowest Stock Price and Dates.mp4
    04:47
  • 3.1 Dataset GEStock.csv.html
  • 3.2 Dataset IBMStock.csv.html
  • 3.3 Source Code MinMaxRange.R.html
  • 3. Graphically Analyzing Stock Prices.mp4
    07:08
  • 4.1 Dataset GEStock.csv.html
  • 4.2 Dataset IBMStock.csv.html
  • 4.3 Source Code MeanMedianMode.R.html
  • 4.4 Source Code VarianceSD.R.html
  • 4. Analyzing Skewness of Stock Prices - Mean, Median and Standard Deviation.mp4
    04:55
  • 5.1 Dataset GEStock.csv.html
  • 5.2 Dataset IBMStock.csv.html
  • 5.3 Source Code VarianceSD.R.html
  • 5. Graphically Comparing Stock Prices in same Layout.mp4
    02:12
  • 6. How to Get Certificate of Completion.mp4
    00:41
  • Description


    Learn R Programming Fundamentals, Data Wrangling, Data Visualization for Data Science

    What You'll Learn?


    • Fundamentals of R Programming
    • Work with RStudio
    • Use Vectors, Matrices, Lists, Data Frames
    • Importing and Handling Large CSV files Data in R
    • Import packages in R & use dplyr Package for Data Wrangling
    • Create Data Visualization in R
    • Using R for Basic Statistical Data Analysis

    Who is this for?


  • Beginner who wants to learn R Programming
  • What You Need to Know?


  • No prior knowledge or technical backgrounds is required
  • More details


    Description

    Welcome to this course of R Programming for Beginners with the hands-on tutorial, and become an R Professional which is one of the most favoured skills, that employer's need.

    Whether you are new to programming or have never programmed before in R Language, this course is for you! This course covers the R Programming from scratch. This course is self-paced. There is no need to rush - you learn on your own schedule. 

    R programming language iѕ one of the best open-source programming language and more powerful than other programming languages. It iѕ well documented and has a clean syntax and quite еаѕу tо lеаrn.

    This course will help anyone who wants to start a саrееr in Data Science and Machine Lеаrning. You need to have basic undеrѕtаnding оf R Programming to become a Data Scientist or Data Analyst.

    This course begins with the introduction to R course that will help you write R code in no time. Then we help you with the installation of R and RStudio on your computer and setting up the programming environment. This course will provide you with everything you need to know about the basics of R Programming.

    In this course we will cover the following topics:

    • Basics of R Programming including Operators

    • Fundamentals of R Programming

    • Vectors, Matrices, Lists

    • Data Frames

    • Importing Data in Data Frames using Text and CSV files

    • Data Wrangling using dplyr package

    • Data Visualization


    This course teaches R Programming in a practical manner with hands-on experience with coding screen-cast. 

    Once you complete this course, you will be able to create or develop R Programs to solve any complex problems with ease.

    Who this course is for:

    • Beginner who wants to learn R Programming

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Syed Mohiuddin
    Syed Mohiuddin
    Instructor's Courses
    Welcome to my Udemy Courses, I make programming tutorials from beginner to advanced level, I focus on creating video tutorials for programmers, software developers, engineers, and analysts.I cover topics for all skill levels, so there is something for everyone here. My focus is on Python and R programming which is applied in statistics, data analysis, data science and machine learning.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 110
    • duration 7:44:58
    • English subtitles has
    • Release Date 2023/10/28