Companies Home Search Profile

R for Data Science: Lunch Break Lessons

Focused View

Mark Niemann-Ross

13:41:47

119 View
  • 01 - Scale().mp4
    03:09
  • 01 - Welcome.mp4
    00:50
  • 02 - Exercise files.mp4
    00:36
  • 01 - R built-in data sets.mp4
    05:21
  • 02 - Vector math.mp4
    05:57
  • 03 - Subsetting.mp4
    07:17
  • 04 - R data types Basic types.mp4
    07:34
  • 05 - R data types Vector.mp4
    05:16
  • 06 - R data types List.mp4
    05:27
  • 07 - R data types Factor.mp4
    05:15
  • 08 - R data types Matrix.mp4
    08:48
  • 09 - R data types Array.mp4
    03:50
  • 10 - R data types Data frame.mp4
    06:44
  • 11 - Data frames Order and merge.mp4
    08:10
  • 12 - Data frames Read and update.mp4
    04:44
  • 01 - Data frames rbind.mp4
    03:04
  • 02 - Dataframes cbind.mp4
    03:11
  • 03 - apply and lapply.mp4
    03:21
  • 04 - mapply.mp4
    02:21
  • 05 - plot.mp4
    02:45
  • 06 - Brackets and double-brackets.mp4
    02:50
  • 07 - mean, rowMeans, and colMeans.mp4
    01:49
  • 08 - RSQLite.mp4
    03:44
  • 09 - sqldf.mp4
    02:09
  • 10 - Aggregate.mp4
    03:17
  • 11 - Random numbers.mp4
    04:26
  • 12 - Pipeline.mp4
    04:42
  • 13 - Working with clipboards.mp4
    02:45
  • 01 - Style guides.mp4
    03:00
  • 02 - cut.mp4
    03:17
  • 03 - split.mp4
    03:44
  • 04 - askYesNo.mp4
    03:46
  • 05 - cdplot.mp4
    05:30
  • 06 - Fun.mp4
    03:09
  • 07 - boxplot.mp4
    02:28
  • 08 - Histogram.mp4
    03:30
  • 09 - Plot to file.mp4
    05:55
  • 10 - coplot.mp4
    03:57
  • 11 - cowsay.mp4
    02:34
  • 12 - table.mp4
    02:46
  • 13 - Look inside.mp4
    03:11
  • 01 - barplot.mp4
    02:31
  • 02 - Pie chart.mp4
    02:11
  • 03 - unlist.mp4
    03:24
  • 04 - Joins Inner and full.mp4
    03:03
  • 05 - Joins Left and right.mp4
    02:13
  • 06 - Sets Union, intersect, and difference.mp4
    02:10
  • 07 - Sets Equal and in.mp4
    02:14
  • 08 - colors.mp4
    02:25
  • 09 - ifelse.mp4
    03:05
  • 10 - spineplot.mp4
    02:36
  • 11 - browser.mp4
    03:37
  • 12 - debugonce.mp4
    02:25
  • 13 - Default mirror.mp4
    02:31
  • 01 - Dealing with NA.mp4
    06:01
  • 02 - Using with().mp4
    02:55
  • 03 - Simple string matching.mp4
    04:35
  • 04 - grep.mp4
    02:53
  • 05 - dotchart.mp4
    03:54
  • 06 - fourfoldplot.mp4
    03:34
  • 07 - matplot.mp4
    03:50
  • 08 - dimnames.mp4
    05:04
  • 09 - mosaicplot.mp4
    04:23
  • 10 - stemplot.mp4
    02:57
  • 11 - stripchart.mp4
    03:10
  • 12 - sunflower.mp4
    02:57
  • 13 - Switch.mp4
    02:16
  • 01 - Switch on factors.mp4
    02:18
  • 02 - Anyall.mp4
    04:13
  • 03 - sub, gsub, regex, and backreferences.mp4
    04:52
  • 04 - agrep and fuzzy matching.mp4
    04:44
  • 05 - combn finds combinations.mp4
    02:33
  • 06 - edit, fix, and dataentry.mp4
    04:57
  • 07 - zeallot.mp4
    05:30
  • 08 - menu.mp4
    02:58
  • 09 - person.mp4
    03:16
  • 10 - txtProgressBar.mp4
    03:13
  • 11 - zip and tar.mp4
    03:50
  • 12 - bitwise.mp4
    04:11
  • 13 - by is like tapply.mp4
    04:15
  • 14 - Update your R.mp4
    04:01
  • 01 - Be careful with transpose.mp4
    04:45
  • 02 - Passwords.mp4
    04:45
  • 03 - heatmap.mp4
    04:24
  • 04 - combine.mp4
    04:11
  • 05 - stopifnot.mp4
    02:44
  • 06 - weighted.mean.mp4
    02:16
  • 07 - chartr.mp4
    03:50
  • 08 - file.choose.mp4
    04:02
  • 09 - duplicated and unique.mp4
    02:52
  • 10 - load and save.mp4
    04:23
  • 11 - floor, round, ceiling, and trunc.mp4
    02:32
  • 12 - expand.grid.mp4
    02:55
  • 13 - Professional groups.mp4
    02:26
  • 01 - Simplify with c.mp4
    03:29
  • 02 - Logical operators.mp4
    05:56
  • 03 - char.expand.mp4
    03:57
  • 04 - complete.cases.mp4
    03:16
  • 05 - swirl.mp4
    02:08
  • 06 - tryCatch.mp4
    03:23
  • 07 - Double colons.mp4
    03:05
  • 08 - for loop.mp4
    04:54
  • 09 - The 100th episode.mp4
    04:12
  • 10 - while loop.mp4
    04:18
  • 11 - repeat loop.mp4
    04:14
  • 12 - Create your own swirl lesson.mp4
    04:04
  • 13 - Logic and flow control.mp4
    04:02
  • 01 - matrix, row, and column.mp4
    04:41
  • 02 - cumsum, cumprod, cummax, an dcummin.mp4
    04:11
  • 03 - issymetric.mp4
    03:14
  • 04 - file.access.mp4
    04:00
  • 05 - file.info.mp4
    04:01
  • 06 - dput and dget.mp4
    04:35
  • 07 - Sort a data frame by multiple columns.mp4
    04:12
  • 08 - diag.mp4
    02:52
  • 09 - crossprod.mp4
    03:13
  • 10 - upper.tri and lower.tri.mp4
    03:07
  • 11 - strsplit() splits strings at matched characters.mp4
    02:37
  • 12 - Use setnames() to change the name of an object.mp4
    05:03
  • 13 - Change the structure of a vector with stack().mp4
    04:44
  • 01 - Use droplevels() to simplify factors.mp4
    03:26
  • 02 - Use .Rmd for documentation.mp4
    07:03
  • 03 - Use rep() to create long repetitive vectors.mp4
    04:58
  • 04 - Use format() to improve readability.mp4
    04:53
  • 05 - Use pmax() and pmin() to discover the scope of paired vectors.mp4
    05:18
  • 06 - Use print() for more than you do now.mp4
    04:55
  • 07 - Use range() and extendrange() to analyze and manipulate groups of numbers.mp4
    03:42
  • 08 - Evaluate the importance of a number with rank().mp4
    04:51
  • 09 - Use saveRDS() and readRDS() to serialize objects.mp4
    03:26
  • 10 - Use regular expressions with regexpr() and gregexpr().mp4
    04:22
  • 11 - message.mp4
    05:21
  • 12 - regexpr.mp4
    05:45
  • 13 - diff.mp4
    04:50
  • 01 - exists.mp4
    01:58
  • 02 - formulas.mp4
    04:42
  • 03 - RPres.mp4
    05:26
  • 04 - lattice Introduction.mp4
    05:08
  • 05 - lattice xyplot.mp4
    05:37
  • 06 - lattice cloud and wireframe.mp4
    04:31
  • 07 - lattice contourplot.mp4
    04:08
  • 08 - lattice barchart.mp4
    04:57
  • 09 - lattice splom charts.mp4
    06:14
  • 10 - lattice panels.mp4
    04:50
  • 11 - lattice stripplot.mp4
    03:18
  • 12 - whichmin and whichmax.mp4
    02:52
  • 13 - par font, size, color.mp4
    05:10
  • 01 - par margins.mp4
    06:21
  • 02 - par pch and points.mp4
    03:17
  • 03 - legend.mp4
    05:26
  • 04 - identical.mp4
    03:29
  • 05 - Matrix math Overview of functions.mp4
    01:38
  • 06 - Matrix math review.mp4
    04:50
  • 07 - matrix solve systems.mp4
    04:11
  • 08 - matrix solve inverse.mp4
    03:32
  • 09 - matrix backsolve and forwardsolve.mp4
    05:24
  • 10 - Matrix Determinant.mp4
    03:00
  • 11 - Arrays and outer.mp4
    02:49
  • 12 - Matrix Crossproduct.mp4
    02:07
  • 13 - Matrix SVD and QR decomposition.mp4
    03:39
  • 01 - Matrix Eigenvalues and eigenvectors.mp4
    01:38
  • 02 - Locator.mp4
    04:38
  • 03 - on.exit.mp4
    04:11
  • 04 - missing.mp4
    03:11
  • 05 - nargs.mp4
    02:28
  • 06 - tidyverse.mp4
    05:43
  • 07 - gutenbergr.mp4
    05:04
  • 08 - Create and clean a natural language corpus.mp4
    07:25
  • 09 - Remove stopwords from an NLP corpus.mp4
    05:16
  • 10 - NLP and term-document matrix.mp4
    05:53
  • 01 - Analyze term-document matrix.mp4
    05:38
  • 02 - NLP packages Tidytext.mp4
    05:07
  • 03 - NLP packages Quanteda.mp4
    07:40
  • 04 - NLP packages Sentiment analysis.mp4
    08:28
  • 05 - Word clouds.mp4
    03:10
  • 06 - Hidden features of installr.mp4
    04:01
  • 07 - Use the Matrix package.mp4
    05:29
  • 08 - Create a sparse matrix.mp4
    04:21
  • 09 - Sparse matrices, triangles, and more.mp4
    06:25
  • 10 - Bootstrap analysis with R.mp4
    06:08
  • 11 - checkUsage.mp4
    04:41
  • 01 - Use R on the Raspberry Pi.mp4
    07:32
  • 02 - list2df().mp4
    04:28
  • 03 - Introduction to clustering.mp4
    02:23
  • 04 - Clustering with kmeans.mp4
    06:57
  • 05 - Clustering with pam and clara.mp4
    06:23
  • 06 - Understanding silhouette graphs.mp4
    08:39
  • 07 - Clustering with fanny.mp4
    05:23
  • 08 - Clustering with hclust.mp4
    05:12
  • 09 - Clustering with agnes.mp4
    06:22
  • 10 - Clustering with diana.mp4
    04:20
  • 11 - cutree and identify with hclust.mp4
    04:15
  • 12 - Clustering with mona.mp4
    04:31
  • 13 - Clustering dist vs. daisy.mp4
    04:32
  • 01 - Parameterized R markdown.mp4
    03:42
  • 02 - Run R on a schedule.mp4
    02:53
  • 03 - The new forward pipe operator.mp4
    03:56
  • 04 - Backslash lambda functions.mp4
    05:24
  • 05 - Dist() in depth.mp4
    05:29
  • Ex_Files_R_Data_Lunch_Break.zip
  • Ex_Files_R_for_Data_Sci_2021_Q3.zip
  • Ex_Files_R_for_Data_Sci_2021_Q4.zip
  • Description


    Programming is learned in small bits. You build on basic concepts. You transfer the knowledge you already have to the next language. Lunch Break Lessons teaches R—one of the most popular programming languages for data analysis and reporting—in short lessons that expand on what existing programmers already know.

    The five minutes you spend each week will provide you with a building block you can use in the next two hours at work. Review language basics, discover methods to improve existing R code, explore new and interesting features, and learn about useful development tools and libraries that will make your time programming with R that much more productive.

    All series code samples can be downloaded at https://github.com/mnr/five-minutes-of-R.

    Note: Because this is an ongoing series, viewers will not receive a certificate of completion.

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Mark Niemann-Ross
    Mark Niemann-Ross
    Instructor's Courses
    I’m friends with technology. But I’m not blindly in love with it. I ask it questions. I explain it. I prioritize people over technology. Bigger, better, and faster features make shinier products, but that isn’t what people want. People don’t want widgets, they want elegance and relevance. I’m an educator, manager, evangelist, marketer, technologist, futurist, coder. I point to the future. I explain the present. I learn from the past.  People speak different languages: marketing, sales, engineering, management, strategy. I’m fluent in all of those. Sometimes I’m abrupt. Sometimes I apologize. I’m passionate, but willing to believe I’m wrong. I try to inform myself. “Why” is my favorite question, followed by “When.” I write science fiction. Sometimes it’s about spaceships, sometimes it’s about products. The goal is the same; explain where we want to be, point out hazards, celebrate arrival. I’m engaging. Informed. Opinionated. Respectful. Your thoughts?
    LinkedIn Learning is an American online learning provider. It provides video courses taught by industry experts in software, creative, and business skills. It is a subsidiary of LinkedIn. All the courses on LinkedIn fall into four categories: Business, Creative, Technology and Certifications. It was founded in 1995 by Lynda Weinman as Lynda.com before being acquired by LinkedIn in 2015. Microsoft acquired LinkedIn in December 2016.
    • language english
    • Training sessions 198
    • duration 13:41:47
    • Release Date 2023/01/18

    Courses related to Data Science

    Courses related to R Programming

    Subtitle
    Applying Linear Algebra with R
    Pluralsight Brandon Strain
    Brandon Strain
    Applying Linear Algebra with R
    1:15:32
    English subtitles
    03/13/2023
    Subtitle
    Implementing Monte Carlo Method in R
    Subtitle
    Programming R Vectors and Factors