Companies Home Search Profile

Quantum Computing from Beginner to Expert

Focused View

Calvin Tang

3:45:26

171 View
  • 1.1 Lecture 1 Introduction.pdf
  • 1. Introduction.mp4
    03:58
  • 2.1 Lecture 2 A Brief History of Quantum Computing.pdf
  • 2. A Brief History of Quantum Computing.mp4
    08:01
  • 3.1 Lecture 3 Main Application Areas.pdf
  • 3. Main Application Areas.mp4
    01:28
  • 1.1 Lecture 1 Complex Numbers.pdf
  • 1. Complex Numbers.mp4
    06:13
  • 2.1 Lecture 2 Relationship between Complex Numbers and Vectors.pdf
  • 2. Relationship between Complex Numbers and Vectors.mp4
    02:12
  • 3.1 Lecture 3 Hilbert Space and Euclidean Space Conversion.pdf
  • 3. Hilbert Space and Euclidean Space Conversion.mp4
    01:33
  • 4.1 Lecture 4 Comparison of Matrix Types.pdf
  • 4. Comparison of Matrix Types.mp4
    01:28
  • 5.1 Lecture 5 Symmetric Matrix and Hermitian Matrix.pdf
  • 5. Symmetric Matrix and Hermitian Matrix.mp4
    01:38
  • 6.1 Lecture 6 Orthogonal Matrix and Unitary Matrix.pdf
  • 6. Orthogonal Matrix and Unitary Matrix.mp4
    01:33
  • 1.1 Lecture 1 Dirac notation.pdf
  • 1. Dirac notation.mp4
    01:41
  • 2.1 Lecture 2 Single Qubit.pdf
  • 2. Single Qubit.mp4
    03:06
  • 3.1 Lecture 3 Multi-Qubit System.pdf
  • 3. Multi-Qubit System.mp4
    01:27
  • 1.1 Lecture 1 Introduction.pdf
  • 1. Introduction.mp4
    01:41
  • 2.1 Lecture 2 Global Phase.pdf
  • 2. Global Phase.mp4
    01:04
  • 3.1 Lecture 3 Dimension Reduction.pdf
  • 3. Dimension Reduction.mp4
    01:05
  • 4.1 Lecture 4 Half Angles.pdf
  • 4. Half Angles.mp4
    01:12
  • 5.1 Lecture 5 Bloch Sphere.pdf
  • 5. Bloch Sphere.mp4
    00:29
  • 1.1 Lecture 1 Unitary Transformation.pdf
  • 1. Unitary Transformation.mp4
    01:08
  • 2.1 Lecture 2 Hermitian Conjugate Operator - Common Formulas.pdf
  • 2. Hermitian Conjugate Operator - Common Formulas.mp4
    01:03
  • 3.1 Lecture 3 How to calculate the unitary transformation matrix for a single qubit.pdf
  • 3. How to calculate the unitary transformation matrix for a single qubit.mp4
    01:53
  • 4.1 Lecture 4 Hadamard Gate.pdf
  • 4. Hadamard Gate.mp4
    01:50
  • 5.1 Lecture 5 Pauli Operator.pdf
  • 5. Pauli Operator.mp4
    01:43
  • 6.1 Lecture 6 Pauli-X Gate.pdf
  • 6. Pauli-X Gate.mp4
    02:12
  • 7.1 Lecture 7 Pauli-Y Gate.pdf
  • 7. Pauli-Y Gate.mp4
    00:48
  • 8.1 Lecture 8 Pauli-Z Gate.pdf
  • 8. Pauli-Z Gate.mp4
    00:45
  • 1.1 Lecture 1 Exponential Function of Matrices.pdf
  • 1. Exponential Function of Matrices.mp4
    01:52
  • 2.1 Lecture 2 Generator - Pauli Matrices.pdf
  • 2. Generator - Pauli Matrices.mp4
    07:02
  • 3.1 Lecture 3 Density Operator (Matrix).pdf
  • 3. Density Operator (Matrix).mp4
    03:51
  • 4.1 Lecture 4 3D Rotations in Four-Dimensional Space.pdf
  • 4. 3D Rotations in Four-Dimensional Space.mp4
    01:12
  • 5.1 Lecture 5 RX Gate.pdf
  • 5. RX Gate.mp4
    02:03
  • 6.1 Lecture 6 RY Gate.pdf
  • 6. RY Gate.mp4
    03:59
  • 7.1 Lecture 7 RZ Gate.pdf
  • 7. RZ Gate.mp4
    03:27
  • 1.1 Lecture 1 Tensor Product.pdf
  • 1. Tensor Product.mp4
    05:14
  • 2.1 Lecture 2 How to calculate the unitary transformation matrix for a two-qubit system.pdf
  • 2. How to calculate the unitary matrix for a two-qubit system.mp4
    02:40
  • 3.1 Lecture 3 CNOT Gate.pdf
  • 3. CNOT Gate.mp4
    02:31
  • 4.1 Lecture 4 SWAP Gate .pdf
  • 4. SWAP Gate.mp4
    02:22
  • 5.1 Lecture 5 How to calculate the unitary transformation matrix for a three-qubit system.pdf
  • 5. How to calculate the unitary matrix for a three-qubit system.mp4
    02:49
  • 6.1 Lecture 6 Toffoli (CCNOT) Gate.pdf
  • 6. Toffoli (CCNOT) Gate.mp4
    03:12
  • 7.1 Lecture 7 Fredkin (CSWAP) Gate.pdf
  • 7. Fredkin (CSWAP) Gate.mp4
    03:45
  • 1.1 Lecture 1 Measurement and Collapse.pdf
  • 1. Measurement and Collapse.mp4
    01:56
  • 2.1 Lecture 2 The Hermitian adjoint operator and common formulas.pdf
  • 2. The Hermitian adjoint operator and common formulas.mp4
    00:28
  • 3.1 Lecture 3 Normal Matrix.pdf
  • 3. Normal Matrix.mp4
    02:30
  • 4.1 Lecture 4 Completeness Equation.pdf
  • 4. Completeness Equation.mp4
    00:55
  • 5.1 Lecture 5 Projection Operator.pdf
  • 5. Projection Operator.mp4
    02:54
  • 6.1 Lecture 6 Projective Measurements.pdf
  • 6. Projective Measurements.mp4
    04:39
  • 7.1 Lecture 7 Measurement of a Single Qubit.pdf
  • 7. Measurement of a Single Qubit.mp4
    03:57
  • 8.1 Lecture 8 Measurement of a Two-qubit System.pdf
  • 8. Measurement of a Two-qubit System.mp4
    02:52
  • 1.1 Lecture 1 Introduction to Quantum Circuits.pdf
  • 1. Introduction to Quantum Circuits.mp4
    01:12
  • 2.1 Lecture 2 X Gate, Y Gate, Z Gate, H Gate.pdf
  • 2. X Gate, Y Gate, Z Gate, H Gate.mp4
    02:23
  • 3.1 Lecture 3 RX Gate, RY Gate, RZ Gate.pdf
  • 3. RX Gate, RY Gate, RZ Gate.mp4
    01:42
  • 4.1 Lecture 4 CNOT Gate, SWAP Gate, Toffoli Gate.pdf
  • 4. CNOT Gate, SWAP Gate, Toffoli Gate.mp4
    01:46
  • 1.1 Lecture 1 Quantum entanglement.pdf
  • 1. Quantum entanglement.mp4
    07:40
  • 2.1 Lecture 2 Hadamard Test - Real part.pdf
  • 2. Hadamard Test - Real part.mp4
    06:05
  • 3.1 Lecture 3 Hadamard Test Imaginary part.pdf
  • 3. Hadamard Test Imaginary part.mp4
    01:29
  • 4.1 Lecture 4 SWAP Test.pdf
  • 4. SWAP Test.mp4
    05:36
  • 1.1 Lecture 1 2D Geometric Transformations .pdf
  • 1. 2D Geometric Transformations.mp4
    05:23
  • 2.1 Lecture 2 Transformation in Arbitrary Dimensions.pdf
  • 2. Transformation in Arbitrary Dimensions.mp4
    03:31
  • 3.1 Lecture 3 Introduction to Amplitude Amplification.pdf
  • 3. Introduction to Amplitude Amplification.mp4
    01:34
  • 4.1 Lecture 4 Amplitude Amplification Operator .pdf
  • 4. Amplitude Amplification Operator.mp4
    01:42
  • 1.1 Lecture 1 Fourier series And Fourier transform.pdf
  • 1. Fourier series And Fourier transform.mp4
    04:40
  • 2.1 Lecture 2 FT, DFT, IDFT.pdf
  • 2. Fourier Transform, DFT, IDFT.mp4
    03:03
  • 3.1 Lecture 3 Quantum Fourier Transform.pdf
  • 3. Quantum Fourier Transform.mp4
    07:02
  • 1.1 Lecture 1 Introduction.pdf
  • 1. Introduction.mp4
    02:45
  • 2.1 Lecture 2 Quantum Circuit.pdf
  • 2. Quantum Circuit.mp4
    01:32
  • 3.1 Lecture 3 Quantum Phase Estimation - Steps.pdf
  • 3. Quantum Phase Estimation - Steps.mp4
    04:31
  • 1.1 Lecture 1 Logic Gates.pdf
  • 1. Logic Gates.mp4
    04:00
  • 2.1 Lecture 2 One-bit Adder.pdf
  • 2. One-bit Adder.mp4
    03:39
  • 3.1 Lecture 3 Multi-bit Adder.pdf
  • 3. Multi-bit Adder.mp4
    05:05
  • 4.1 Lecture 4 Quantum Subtractor,Multiplier,Divider.pdf
  • 4. Quantum Subtractor,Multiplier,Divider.mp4
    02:11
  • 1.1 Lecture 1 Overview of HHL Quantum Algorithm.pdf
  • 1. Overview of HHL Quantum Algorithm.mp4
    02:32
  • 2.1 Lecture 2 HHL Algorithm Quantum Circuit.pdf
  • 2. HHL Algorithm Quantum Circuit.mp4
    05:11
  • 1.1 Lecture 1 DeutschJozsa Problem.pdf
  • 1. DeutschJozsa Problem.mp4
    01:46
  • 2.1 Lecture 2 Oracle - Quantum Circuit.pdf
  • 2. Oracle - Quantum Circuit.mp4
    03:15
  • 3.1 Lecture 3 Oracle - Simplification of Quantum Circuits.pdf
  • 3. Oracle - Simplification of Quantum Circuits.mp4
    01:42
  • 4.1 Lecture 4 Deutsch Algorithm.pdf
  • 4. Deutsch Algorithm.mp4
    02:57
  • 5.1 Lecture 5 Deutsch-Jozsa Algorithm.pdf
  • 5. Deutsch-Jozsa Algorithm.mp4
    01:59
  • 1.1 Lecture 1 Reflection and Mirror Transformation.pdf
  • 1. Reflection and Mirror Transformation.mp4
    00:33
  • 2.1 Lecture 2 Grovers Search Algorithm.pdf
  • 2. Grovers Search Algorithm.mp4
    04:45
  • 3.1 Lecture 3 Grover Algorithm - Two Qubits.pdf
  • 3. Grover Algorithm - Two Qubits.mp4
    02:22
  • 4.1 Lecture 4 Grover Algorithm - N Qubits.pdf
  • 4. Grover Algorithm - N Qubits.mp4
    02:32
  • Description


    Learning Quantum Computing through Linear Algebra

    What You'll Learn?


    • Introduction of Quantum Computing
    • Bloch Sphere
    • Basic Logic Gates for Single Qubit
    • Rotation Logic Gates for Single Qubit
    • Multi-Qubit Logic Gates
    • Quantum Measurement
    • Quantum Circuits
    • Algorithms: Amplitude Amplification
    • Algorithms: Quantum Fourier Transform
    • Algorithms: Quantum Phase Estimation
    • Algorithms: Quantum Arithmetic Operations
    • Algorithms: HHL Algorithm
    • Algorithms: Deutsch-Josza Algorithm
    • Algorithms: Grover Algorithm

    Who is this for?


  • Students who want to learn about Quantum Computing
  • Quantum Computing enthusiasts
  • What You Need to Know?


  • High school level mathematics: Complex numbers, linear algebra, probability, statistics, & boolean logic
  • More details


    Description

    This comprehensive course is suitable for a wide range of learners, from those who are just beginning to explore quantum computing to experts in the field. Our aim is to cover every aspect of quantum computing, starting from the basics and progressing to complex application scenarios. Unlike other courses, we place a strong emphasis on learning quantum computing through linear algebra and provide detailed matrices and vector calculations for key concepts, allowing you to develop a solid understanding of the subject matter.

    The course is divided into two main parts, each of which is designed to provide learners with a deep understanding of quantum computing:

    1. Basic part, which includes:

    An overview of quantum computing, quantum bits, single quantum bit logical gates, multi-quantum bit logical gates, quantum measurement, quantum circuits, and more.

    1. Algorithm part, which includes:

    The Hadamard Test, SWAP Test, amplitude amplification, quantum Fourier transform, quantum phase estimation, quantum arithmetic, the HHL algorithm, Deutsch-Josza algorithm, Grover algorithm, and more.

    But that's not all - we're continually updating and improving the course to include even more valuable information, such as:

    1. Programming part, which includes:

    Examples of basic logic gates based on Qiskit, as well as learning examples of algorithms.

    1. Machine learning part, which includes:

    Algorithms and implementations of quantum machine learning and quantum artificial intelligence.

    1. Application part, which includes:

    The application of quantum computing technology in finance and other fields, allowing you to gain a broader understanding of how quantum computing is transforming industries and changing the face of technology.


    Who this course is for:

    • Students who want to learn about Quantum Computing
    • Quantum Computing enthusiasts

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    I have extensive experience in various technologies including Artificial Intelligence, Machine Learning, Quantum Computing and Cloud Computing. My passion lies in AI/ML and cloud-native architecture, and I aim to make technology easy to understand.To achieve this goal, I break down the learning curve by building practical examples such as SDKs and solutions. Additionally, I offer online courses to help people get started building AI applications such as computer vision, NLP, ASR/TTS, and vector search engines.In my free time, I explore emerging areas of technology such as biomedicine powered by AI, quantum computing, AR/VR (VTuber), and embedded systems. I also contribute to open-source projects, including:AI: github - mymagicpower/AIASBiology Computing: github - mymagicpower/bio-computingI invite you to join me on this journey of exploring and sharing the fascinating world of new emerging technology. Enjoy learning!Best regards,Calvin Tang
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 80
    • duration 3:45:26
    • Release Date 2023/06/12