Companies Home Search Profile

Python Programming for Biological Problems

Focused View

Jones Granatyr,IA Expert Academy,Guilherme Matos Passarini, phD

6:57:47

329 View
  • 1. Course content - Jones.mp4
    04:31
  • 2.1 python_for_biology_intro.PDF
  • 2. Course content - Guilherme.mp4
    05:21
  • 3. Introduction to Python.mp4
    04:09
  • 4. Installation.mp4
    07:34
  • 5. Python IDEs.mp4
    12:42
  • 1. Variables and constants.mp4
    14:08
  • 2. Mathematical operations.mp4
    05:59
  • 3. Exercises.mp4
    02:13
  • 4. Exercise 1 Ki calculation.mp4
    03:36
  • 5. Exercise 2 Recombination of genotypes.mp4
    03:34
  • 1. Logical and relational operators.mp4
    08:27
  • 2. Exercise.mp4
    01:28
  • 3. Exercise 1 Comparing weights of proteins.mp4
    02:12
  • 1. Strings.mp4
    11:06
  • 2. Exercises.mp4
    01:48
  • 3. Sequences to be used in exercise 2.html
  • 4. Solution abbreviating scientific names.mp4
    04:17
  • 5. Solution Extracting an exon from a gene.mp4
    02:32
  • 1. Conditional operators.mp4
    10:25
  • 2. Exercises.mp4
    01:52
  • 3. Solution Taxonomic families.mp4
    02:29
  • 4. Solution Codons in a RNA sequence.mp4
    03:28
  • 1. For loop.mp4
    11:16
  • 2. While loop.mp4
    10:25
  • 3. Exercises.mp4
    01:32
  • 4. Solution transcription of DNA.mp4
    02:27
  • 5. Solution Bacterial growth.mp4
    02:47
  • 1. Tuples and lists.mp4
    08:51
  • 2. Dictionaries and sets.mp4
    09:56
  • 3. Matrices.mp4
    07:02
  • 4. Exercises.mp4
    01:38
  • 5. Dicitionary with the symbols of their aas and the mass.html
  • 6. Solution mass of aminoacid sequeces.mp4
    05:00
  • 7. Solution transcription of DNA.mp4
    02:54
  • 8. Project 1 Simulating a biology test.mp4
    01:32
  • 9. Questions for the test.html
  • 10. Solution part 1.mp4
    01:51
  • 11. Solution part 2.mp4
    03:04
  • 12. Solution part 3.mp4
    02:40
  • 1. Functions.mp4
    10:07
  • 2. Exercises.mp4
    01:47
  • 3. Solution function of recombination.mp4
    02:04
  • 4. Solution Ki calculation.mp4
    03:36
  • 5. Solution transcription function.mp4
    03:28
  • 6. Project 2 calculating gene frequencies.mp4
    04:27
  • 7.1 CHI SQUARE TABLE.pdf
  • 7. Chi-square distribution table.html
  • 8. Project 2 part 1.mp4
    05:28
  • 9. Project 2 part 2.mp4
    04:57
  • 1. Math and datetime.mp4
    09:43
  • 2. Random and time.mp4
    11:10
  • 3. Exercises.mp4
    01:46
  • 4. Solution generation of random DNA sequence.mp4
    02:14
  • 5. Solution function of population growth.mp4
    02:39
  • 1. Creating packages.mp4
    07:04
  • 2. Exercises.mp4
    02:30
  • 3. Solution DNA module.mp4
    04:47
  • 4. Solution module for ecology functions.mp4
    05:14
  • 1. Errors and exceptions.mp4
    14:22
  • 2. Exercise.mp4
    01:32
  • 3. Solution validation of numerical inputs.mp4
    03:44
  • 4. Project 3 - Identification key.mp4
    06:59
  • 5.1 Identification key.pdf
  • 5. Image of the key.html
  • 6. Solution part 1.mp4
    02:07
  • 7. Solution part 2.mp4
    07:53
  • 1. Reading and writing text files.mp4
    05:52
  • 2. Genetic databases.mp4
    03:06
  • 3. Protein database PDB.mp4
    04:03
  • 4. Exercises.mp4
    01:21
  • 5. Solution reading a DNA sequence.mp4
    03:04
  • 6. Solution reading a .pdb sequence.mp4
    03:57
  • 7. Project 4 - Reading and processing gene sequences.mp4
    03:48
  • 8. Solution part 1.mp4
    08:31
  • 9. Solution part 2.mp4
    05:32
  • 10. Solution part 3.mp4
    06:13
  • 1. Introduction.mp4
    13:06
  • 2. Search, match and find all.mp4
    12:42
  • 3. Regular expressions - main metacharacters and quantifiers.html
  • 4. Exercise.mp4
    01:50
  • 5. Solution Identifying species names in a text.mp4
    02:35
  • 6. Sample sequence for exercise 2.html
  • 7. Solution Analyzing a genetic sequence.mp4
    02:21
  • 1. Introduction.mp4
    06:40
  • 2. Practical.mp4
    13:47
  • 3. Exercise.mp4
    01:38
  • 4. Solution Class Plant.mp4
    04:53
  • 5. Solution Class DNA.mp4
    03:52
  • 1. Final remarks.mp4
    02:32
  • Description


    Solve more than 30 exercises and 4 Biology projects using Python programming language! Step by step implementations!

    What You'll Learn?


    • Learn the basic syntax of Python language quickly and easily
    • Implement the main Python language operators: mathematical, logical, relational and conditional
    • Create loop structures using for and while commands
    • Implement functions for modularization of programs
    • Implement the main Python language collections: tuples, lists, dictionaries, sets and arrays
    • Manipulate text files
    • Perform error and exception handling
    • Learn the basic intuition and practice about regular expressions
    • Learn the basic intuition and practice of Object Orientation
    • Estimate the rate of recombination between genes
    • Analyze genetic sequences
    • Model bacterial growth
    • Write a code that simulates a biology test, where at the end the grade is calculated
    • Analyze gene sequence files directly from databases in .fasta format
    • Analyze protein structure files in .pdb format
    • Build a basic identification key for plant species

    Who is this for?


  • Biology students or similar areas, such as biomedicine, pharmacy, forestry engineering, etc.
  • Biology or related professionals who wish to learn a programming language
  • Developers or IT professionals who are interested in applying programming knowledge in the field of biology
  • Undergraduate students taking programming courses
  • People interested in programming languages
  • What You Need to Know?


  • Programming logic
  • Basic biological knowledge
  • More details


    Description

    Biologists, biology students, and professionals in related fields generally have little or no contact with computer programming. However, the growing of data in genomic, protein and organism databases can be used to model the solution for some problems, such as the discovery of medicines and insecticides. It leads biologists to benefit from computer programming knowledge, so that they can develop useful applications in molecular biology, ecology, research on diseases, among others.

    This course was developed with the purpose of introducing biologists, students of biology, biomedicine, ecology, pharmacy and professionals in related areas to programming using Python, which is nowadays one of the most used programming languages. It has a clear syntax and is easy to learn especially if you are a professional who are not familiar with technology. Many tools used in the field of biology were written in Python, which makes it a great option for establishing your first contact with computer programming. You will learn the following topics:

    1. Python installation and main tools (IDEs)

    2. Variables, constants and strings

    3. Math operations

    4. Logical, relational and conditional operators

    5. Loops (for and while)

    6. Functions

    7. Lists, dictionaries, tuples, sets and arrays

    8. Manipulation of text files

    9. Error and exception handling

    10. Regular expressions

    11. Object oriented

    After learning the basic concepts of Python, you will be able to apply the concepts in exercises, challenges and practical projects related to ​​Biology. Below are some of the case studies that we will implement step by step:


    1. Prediction of the mass of a peptide sequence according to its amino acid composition

    2. Schedule a biology test that calculates the grade and whether the user got each question right or wrong

    3. Creating classes related to objects in the biological world

    4. .fasta gene sequence analysis

    5. Analysis of gene frequencies according to the Hardy-Weinberg Theorem

    6. Creating functions for population ecology calculations

    7. Discover patterns in RNA sequences

    8. Estimation of gene distances

    9. Basic species identification

    10. Troubleshooting gene frequencies

    11. Creating scripts for parsing .pdb-type protein sequence files

    12. Transcription of DNA sequences into RNA

    There are more than 80 classes, concepts, code demonstration, and exercises with solutions! More than 30 proposed challenges and 4 small projects applying the concepts learned in each section in a biological context, with step-by-step resolution.

    Who this course is for:

    • Biology students or similar areas, such as biomedicine, pharmacy, forestry engineering, etc.
    • Biology or related professionals who wish to learn a programming language
    • Developers or IT professionals who are interested in applying programming knowledge in the field of biology
    • Undergraduate students taking programming courses
    • People interested in programming languages

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Jones Granatyr
    Jones Granatyr
    Instructor's Courses
    Olá! Meu nome é Jones Granatyr e já trabalho em torno de 10 anos com Inteligência Artificial (IA), inclusive fiz o meu mestrado e doutorado nessa área. Atualmente sou professor, pesquisador e fundador do portal IA Expert, um site com conteúdo específico sobre Inteligência Artificial. Desde que iniciei na Udemy criei vários cursos sobre diversos assuntos de IA, como por exemplo: Deep Learning, Machine Learning, Data Science, Redes Neurais Artificiais, Algoritmos Genéticos, Detecção e Reconhecimento Facial, Algoritmos de Busca, Mineração de Textos, Buscas em Textos, Mineração de Regras de Associação, Sistemas Especialistas e Sistemas de Recomendação. Os cursos são abordados em diversas linguagens de programação (Python, R e Java) e com várias ferramentas/tecnologias (tensorflow, keras, pandas, sklearn, opencv, dlib, weka, nltk, por exemplo). Meu principal objetivo é desmistificar a área de IA e ajudar profissionais de TI a entenderem como essa tecnologia pode ser utilizada na prática e que possam visualizar novas oportunidades de negócios.
    IA Expert Academy
    IA Expert Academy
    Instructor's Courses
    A plataforma IA Expert tem o objetivo de trazer cursos teóricos e práticos de fácil entendimento sobre sobre Inteligência Artificial e Ciência de Dados, para que profissionais de todas as áreas consigam entender e aplicar os benefícios que a IA pode trazer para seus negócios, bem como apresentar todas as oportunidades que essa área pode trazer para profissionais de tecnologia da informação. Também trazemos notícias atualizadas semanais sobre a área em nosso portal.
    Guilherme Matos Passarini, phD
    Guilherme Matos Passarini, phD
    Instructor's Courses
    English:Hi, my name is Guilherme, I have a bachelor's degree in Biological Sciences, a master's degree in Experimental Biology, and a Ph.D. also in Experimental Biology, both from the Federal University of Rondônia (Brazil). My main research area is the search for compounds that are active against the parasites of malaria and leishmaniasis. I also have been programming for a while, especially in the programming languages Python and R. My main interests are biology, biotechnology, programming, medicinal chemistry, and artificial intelligence. My main goal here in Udemy is therefore spreading the knowledge related to these areas to people around the world.Português:Bacharel e licenciado em Ciências Biológicas pela Universidade Federal de Rondônia, mestre em Biologia Experimental pela Universidade Federal de Rondônia e  doutor também em Biologia Experimental pela Universidade Federal de Rondônia. Desenvolveu seus trabalhos de iniciação científica e mestrado na busca de moléculas de plantas bioativas contra os parasitas da malária e leishmaniose, tendo trabalhado com fitoquímica e ensaios antiparasitários in vitro. No final do mestrado, começou a se interessar por bioinformática, química medicinal e programação, aplicando alguns programas de bioinformática e quimioinformática para auxiliar na descoberta de drogas antimaláricas. Possui experiência com as linguagens Python e R, e iniciou a programar em Javascript. Seu projeto de doutorado se constitui em avaliar um composto antimalárico já testado durante o mestrado de forma mais aprofundada contra o parasita da malária, realizando análises virtuais, como verificação de características físico-químicas e farmacocinéticas, docking molecular (interação virtual entre ligante e proteína-alvo do parasita) e ensaios em placas de cultura.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 80
    • duration 6:57:47
    • Release Date 2022/12/03