Companies Home Search Profile

Python Mastery for Data, Statistics & Statistical Modeling

Focused View

AI Sciences,AI Sciences Team

28:08:07

22 View
  • 1 - Link to the Python codes for the projects and the data.html
  • 2 - Introduction About the Tutor and AI Sciences.mp4
    11:54
  • 3 - Introduction Introduction To Instructor.mp4
    02:19
  • 4 - Introduction Focus of the CoursePart 1.mp4
    10:54
  • 5 - Introduction Focus of the Course Part 2.mp4
    07:41
  • 6 - Basics of Programming Understanding the Algorithm.mp4
    12:29
  • 7 - Basics of Programming FlowCharts and Pseudocodes.mp4
    09:49
  • 8 - Basics of Programming Example of Algorithms Making Tea Problem.mp4
    12:33
  • 9 - Basics of Programming Example of AlgorithmsSearching Minimun.mp4
    15:47
  • 10 - Basics of Programming Example of AlgorithmsSearching Minimun Quiz.mp4
    00:52
  • 11 - Basics of Programming Example of AlgorithmsSorting Problem.mp4
    07:19
  • 12 - Basics of Programming Example of AlgorithmsSearching Minimun Solution.mp4
    03:24
  • 13 - Basics of Programming Sorting Problem in Python.mp4
    10:34
  • 14 - Why Python and Jupyter Notebook Why Python.mp4
    08:59
  • 15 - Why Python and Jupyter Notebook Why Jupyter Notebooks.mp4
    12:52
  • 16 - Installation of Anaconda and IPython Shell Installing Python and Jupyter Anaconda.mp4
    04:24
  • 17 - Installation of Anaconda and IPython Shell Your First Python Code Hello World.mp4
    09:11
  • 18 - Installation of Anaconda and IPython Shell Coding in IPython Shell.mp4
    07:13
  • 19 - Variable and Operator Variables.mp4
    15:54
  • 20 - Variable and Operator Operators.mp4
    13:38
  • 21 - Variable and Operator Variable Name Quiz.mp4
    05:02
  • 22 - Variable and Operator Bool Data Type in Python.mp4
    06:06
  • 23 - Variable and Operator Comparison in Python.mp4
    07:19
  • 24 - Variable and Operator Combining Comparisons in Python.mp4
    11:01
  • 25 - Variable and Operator Combining Comparisons Quiz.mp4
    03:59
  • 26 - Python Useful function Python Function Round.mp4
    05:37
  • 27 - Python Useful function Python Function Round Quiz.mp4
    01:29
  • 28 - Python Useful function Python Function Round Solution.mp4
    04:41
  • 29 - Python Useful function Python Function Divmod.mp4
    04:28
  • 30 - Python Useful function Python Function Is instance and PowFunctions.mp4
    06:07
  • 31 - Python Useful function Python Function Input.mp4
    08:48
  • 32 - Control Flow in Python If Python Condition.mp4
    12:06
  • 33 - Control Flow in Python if Elif Else Python Conditions.mp4
    08:45
  • 34 - Control Flow in Python if Elif Else Python Conditions Quiz.mp4
    01:36
  • 35 - Control Flow in Python if Elif Else Python Conditions Solution.mp4
    03:54
  • 36 - Control Flow in Python More on if Elif Else Python Conditions.mp4
    11:01
  • 37 - Control Flow in Python More on if Elif Else Python Conditions Quiz.mp4
    00:50
  • 38 - Control Flow in Python More on if Elif Else Python Conditions Solution.mp4
    03:54
  • 39 - Control Flow in Python Indentations.mp4
    13:22
  • 40 - Control Flow in Python Indentations Quiz.mp4
    01:05
  • 41 - Control Flow in Python Indentations Solution.mp4
    02:41
  • 42 - Control Flow in Python Comments and Problem Solving Practice With If.mp4
    16:50
  • 43 - Control Flow in Python While Loop.mp4
    08:23
  • 44 - Control Flow in Python While Loop break Continue.mp4
    12:12
  • 45 - Control Flow in Python While Loop break Continue Quiz.mp4
    01:20
  • 46 - Control Flow in Python While Loop break Continue Solution.mp4
    04:44
  • 47 - Control Flow in Python For Loop.mp4
    08:15
  • 48 - Control Flow in Python For Loop Quiz.mp4
    01:01
  • 49 - Control Flow in Python For Loop Solution.mp4
    03:03
  • 50 - Control Flow in Python Else In For Loop.mp4
    09:48
  • 51 - Control Flow in Python Loops PracticeSorting Problem.mp4
    12:23
  • 52 - Function and Module in Python Functions in Python.mp4
    08:38
  • 53 - Function and Module in Python DocString.mp4
    08:23
  • 54 - Function and Module in Python Input Arguments.mp4
    08:52
  • 55 - Function and Module in Python Multiple Input Arguments.mp4
    09:44
  • 56 - Function and Module in Python Multiple Input Arguments Quiz.mp4
    01:11
  • 57 - Function and Module in Python Multiple Input Arguments Solution.mp4
    04:08
  • 58 - Function and Module in Python Ordering Multiple Input Arguments.mp4
    07:09
  • 59 - Function and Module in Python Output Arguments and Return Statement.mp4
    07:19
  • 60 - Function and Module in Python Function PracticeOutput Arguments and Return Statement.mp4
    13:45
  • 61 - Function and Module in Python Variable Number of Input Arguments.mp4
    07:48
  • 62 - Function and Module in Python Variable Number of Input Arguments Quiz.mp4
    01:24
  • 63 - Function and Module in Python Variable Number of Input Arguments Solution.mp4
    03:47
  • 64 - Function and Module in Python Variable Number of Input Arguments as Dictionary.mp4
    08:05
  • 65 - Function and Module in Python Variable Number of Input Arguments as Dictionary Quiz.mp4
    00:55
  • 66 - Function and Module in Python Variable Number of Input Arguments as Dictionary Solution.mp4
    03:47
  • 67 - Function and Module in Python Default Values in Python.mp4
    11:30
  • 68 - Function and Module in Python Modules in Python.mp4
    05:28
  • 69 - Function and Module in Python Making Modules in Python.mp4
    15:43
  • 70 - Function and Module in Python Function PracticeSorting List in Python.mp4
    27:29
  • 71 - String in Python Strings.mp4
    09:30
  • 72 - String in Python Multi Line Strings.mp4
    05:50
  • 73 - String in Python Indexing Strings.mp4
    14:08
  • 74 - String in Python Indexing Strings Quiz.mp4
    01:02
  • 75 - String in Python Indexing Strings Solution.mp4
    04:21
  • 76 - String in Python String Methods.mp4
    14:56
  • 77 - String in Python String Methods Quiz.mp4
    01:04
  • 78 - String in Python String Methods Solution.mp4
    02:07
  • 79 - String in Python String Escape Sequences.mp4
    10:08
  • 80 - String in Python String Escape Sequences Quiz.mp4
    01:02
  • 81 - String in Python String Escape Sequences Solution.mp4
    03:28
  • 82 - Data Structure Introduction to Data Structure.mp4
    06:46
  • 83 - Data Structure Defining and Indexing.mp4
    10:26
  • 84 - Data Structure Insertion and Deletion.mp4
    07:30
  • 85 - Data Structure Insertion and Deletion Quiz.mp4
    01:08
  • 86 - Data Structure Insertion and Deletion Solution.mp4
    02:18
  • 87 - Data Structure Python PracticeInsertion and Deletion.mp4
    06:36
  • 88 - Data Structure Python PracticeInsertion and Deletion Quiz.mp4
    00:56
  • 89 - Data Structure Python PracticeInsertion and Deletion Solution.mp4
    01:02
  • 90 - Data Structure Deep Copy or Reference Slicing.mp4
    08:25
  • 91 - Data Structure Deep Copy or Reference Slicing Quiz.mp4
    01:20
  • 92 - Data Structure Deep Copy or Reference Slicing Solution.mp4
    01:44
  • 93 - Data Structure Exploring Methods Using TAB Completion.mp4
    07:22
  • 94 - Data Structure Data Structure Abstract Ways.mp4
    06:32
  • 95 - Data Structure Data Structure Practice.mp4
    19:39
  • 96 - Data Structure Data Structure Practice Quiz.mp4
    01:49
  • 97 - Data Structure Data Structure Practice Solution.mp4
    06:15
  • 98 - Link to the Python codes for the projects and the data.html
  • 99 - Introduction Introduction to Instructor and AISciences.mp4
    12:36
  • 100 - Introduction Introduction To Instructor.mp4
    02:19
  • 101 - Introduction Focus of the Course.mp4
    10:15
  • 102 - Probability vs Statistics Probability vs Statistics.mp4
    06:14
  • 103 - Sets Definition of Set.mp4
    08:31
  • 104 - Sets Cardinality of a Set.mp4
    15:43
  • 105 - Sets Subsets PowerSet UniversalSet.mp4
    06:39
  • 106 - Sets Python Practice Subsets.mp4
    07:23
  • 107 - Sets PowerSets Solution.mp4
    14:57
  • 108 - Sets Operations.mp4
    11:51
  • 109 - Sets Operations Exercise 01.mp4
    01:07
  • 110 - Sets Operations Solution 01.mp4
    01:47
  • 111 - Sets Operations Exercise 02.mp4
    01:04
  • 112 - Sets Operations Solution 02.mp4
    01:34
  • 113 - Sets Operations Exercise 03.mp4
    03:12
  • 114 - Sets Operations Solution 03.mp4
    06:28
  • 115 - Sets Python Practice Operations.mp4
    07:37
  • 116 - Sets VennDiagrams Operations.mp4
    06:37
  • 117 - Sets Homework.mp4
    04:10
  • 118 - Experiment Random Experiment.mp4
    06:04
  • 119 - Experiment Outcome and Sample Space.mp4
    10:01
  • 120 - Experiment Outcome and Sample Space Exercise 01.mp4
    00:54
  • 121 - Experiment Outcome and Sample Space Solution 01.mp4
    04:35
  • 122 - Experiment Event.mp4
    07:36
  • 123 - Experiment Event Exercise 01.mp4
    01:01
  • 124 - Experiment Event Solution 01.mp4
    01:34
  • 125 - Experiment Event Exercise 02.mp4
    00:34
  • 126 - Experiment Event Solution 02.mp4
    00:46
  • 127 - Experiment Recap and Homework.mp4
    05:21
  • 128 - Probability Model Probability Model.mp4
    09:54
  • 129 - Probability Model Probability Axioms.mp4
    11:49
  • 130 - Probability Model Probability Axioms Derivations.mp4
    05:03
  • 131 - Probability Model Probability Axioms Derivations Exercise 01.mp4
    00:39
  • 132 - Probability Model Probability Axioms Derivations Solution 01.mp4
    02:25
  • 133 - Probability Model Probablility Models Example.mp4
    06:41
  • 134 - Probability Model Probablility Models More Examples.mp4
    06:17
  • 135 - Probability Model Probablility Models Continous.mp4
    07:07
  • 136 - Probability Model Conditional Probability.mp4
    10:49
  • 137 - Probability Model Conditional Probability Example.mp4
    10:49
  • 138 - Probability Model Conditional Probability Formula.mp4
    07:18
  • 139 - Probability Model Conditional Probability in Machine Learning.mp4
    19:11
  • 140 - Probability Model Conditional Probability Total Probability Theorem.mp4
    07:55
  • 141 - Probability Model Probablility Models Independence.mp4
    06:05
  • 142 - Probability Model Probablility Models Conditional Independence.mp4
    07:13
  • 143 - Probability Model Probablility Models Conditional Independence Exercise 01.mp4
    01:19
  • 144 - Probability Model Probablility Models Conditional Independence Solution 01.mp4
    05:38
  • 145 - Probability Model Probablility Models BayesRule.mp4
    06:28
  • 146 - Probability Model Probablility Models towards Random Variables.mp4
    11:25
  • 147 - Probability Model HomeWork.mp4
    01:05
  • 148 - Random Variables Introduction.mp4
    09:21
  • 149 - Random Variables Random Variables Examples.mp4
    08:28
  • 150 - Random Variables Random Variables Examples Exercise 01.mp4
    00:44
  • 151 - Random Variables Random Variables Examples Solution 01.mp4
    01:24
  • 152 - Random Variables Bernulli Random Variables.mp4
    11:52
  • 153 - Random Variables Bernulli Trail Python Practice.mp4
    15:27
  • 154 - Random Variables Bernulli Trail Python Practice Exercise 01.mp4
    01:00
  • 155 - Random Variables Bernulli Trail Python Practice Solution 01.mp4
    02:09
  • 156 - Random Variables Geometric Random Variable.mp4
    08:32
  • 157 - Random Variables Geometric Random Variable Normalization Proof Optional.mp4
    06:32
  • 158 - Random Variables Geometric Random Variable Python Practice.mp4
    15:06
  • 159 - Random Variables Binomial Random Variables.mp4
    06:55
  • 160 - Random Variables Binomial Python Practice.mp4
    10:58
  • 161 - Random Variables Random Variables in Real DataSets.mp4
    22:54
  • 162 - Random Variables Random Variables in Real DataSets Exercise 01.mp4
    01:04
  • 163 - Random Variables Random Variables in Real DataSets Solution 01.mp4
    02:14
  • 164 - Random Variables Homework.mp4
    01:32
  • 165 - Continous Random Variables Zero Probability to Individual Values.mp4
    08:16
  • 166 - Continous Random Variables Zero Probability to Individual Values Exercise 01.mp4
    04:39
  • 167 - Continous Random Variables Zero Probability to Individual Values Solution 01.mp4
    02:29
  • 168 - Continous Random Variables Probability Density Functions.mp4
    14:21
  • 169 - Continous Random Variables Probability Density Functions Exercise 01.mp4
    00:31
  • 170 - Continous Random Variables Probability Density Functions Solution 01.mp4
    01:45
  • 171 - Continous Random Variables Uniform Distribution.mp4
    05:58
  • 172 - Continous Random Variables Uniform Distribution Exercise 01.mp4
    00:56
  • 173 - Continous Random Variables Uniform Distribution Solution 01.mp4
    01:43
  • 174 - Continous Random Variables Uniform Distribution Python.mp4
    05:11
  • 175 - Continous Random Variables Exponential.mp4
    03:33
  • 176 - Continous Random Variables Exponential Exercise 01.mp4
    01:52
  • 177 - Continous Random Variables Exponential Solution 01.mp4
    01:44
  • 178 - Continous Random Variables Exponential Python.mp4
    08:11
  • 179 - Continous Random Variables Gaussian Random Variables.mp4
    07:11
  • 180 - Continous Random Variables Gaussian Random Variables Exercise 01.mp4
    00:37
  • 181 - Continous Random Variables Gaussian Random Variables Solution 01.mp4
    02:37
  • 182 - Continous Random Variables Gaussian Python.mp4
    23:08
  • 183 - Continous Random Variables Transformation of Random Variables.mp4
    12:44
  • 184 - Continous Random Variables Homework.mp4
    00:50
  • 185 - Expectations Definition.mp4
    05:07
  • 186 - Expectations Sample Mean.mp4
    10:58
  • 187 - Expectations Law of Large Numbers.mp4
    11:51
  • 188 - Expectations Law of Large Numbers Famous Distributions.mp4
    12:55
  • 189 - Expectations Law of Large Numbers Famous Distributions Python.mp4
    21:28
  • 190 - Expectations Variance.mp4
    10:54
  • 191 - Expectations Homework.mp4
    01:08
  • 192 - Project Bayes Classifier Project Bayes Classifier From Scratch.mp4
    52:11
  • 193 - Multiple Random Variables Joint Distributions.mp4
    09:57
  • 194 - Multiple Random Variables Joint Distributions Exercise 01.mp4
    00:50
  • 195 - Multiple Random Variables Joint Distributions Solution 01.mp4
    04:33
  • 196 - Multiple Random Variables Joint Distributions Exercise 02.mp4
    00:47
  • 197 - Multiple Random Variables Joint Distributions Solution 02.mp4
    02:05
  • 198 - Multiple Random Variables Joint Distributions Exercise 03.mp4
    00:40
  • 199 - Multiple Random Variables Joint Distributions Solution 03.mp4
    01:40
  • 200 - Multiple Random Variables Multivariate Gaussian.mp4
    06:46
  • 201 - Multiple Random Variables Conditioning Independence.mp4
    05:02
  • 202 - Multiple Random Variables Classification.mp4
    04:49
  • 203 - Multiple Random Variables Naive Bayes Classification.mp4
    03:36
  • 204 - Multiple Random Variables Regression.mp4
    04:02
  • 205 - Multiple Random Variables Curse of Dimensionality.mp4
    05:44
  • 206 - Multiple Random Variables Homework.mp4
    01:27
  • 207 - Optional Estimation Parametric Distributions.mp4
    05:23
  • 208 - Optional Estimation MLE.mp4
    05:18
  • 209 - Optional Estimation LogLiklihood.mp4
    07:46
  • 210 - Optional Estimation MAP.mp4
    04:20
  • 211 - Optional Estimation Logistic Regression.mp4
    09:45
  • 212 - Optional Estimation Ridge Regression.mp4
    05:47
  • 213 - Optional Estimation DNN.mp4
    05:17
  • 214 - Mathematical Derivations for Math Lovers Permutations.mp4
    08:46
  • 215 - Mathematical Derivations for Math Lovers Combinations.mp4
    13:20
  • 216 - Mathematical Derivations for Math Lovers Binomial Random Variable.mp4
    06:40
  • 217 - Mathematical Derivations for Math Lovers Logistic Regression Formulation.mp4
    07:25
  • 218 - Mathematical Derivations for Math Lovers Logistic Regression Derivation.mp4
    18:48
  • 219 - THANK YOU.mp4
    00:59
  • 220 - Link to the Python codes for the projects and the data.html
  • 221 - Introduction Course Introduction.mp4
    00:41
  • 222 - Introduction AI Sciences.mp4
    01:14
  • 223 - Introduction Course Outline.mp4
    03:45
  • 224 - Summary Statistics Module Intoduction.mp4
    03:00
  • 225 - Summary Statistics Overview.mp4
    03:31
  • 226 - Summary Statistics Summary Statistics.mp4
    01:27
  • 227 - Summary Statistics Average Types.mp4
    01:58
  • 228 - Summary Statistics Mean.mp4
    05:19
  • 229 - Summary Statistics Median.mp4
    03:49
  • 230 - Summary Statistics Median Example.mp4
    01:46
  • 231 - Summary Statistics Mode.mp4
    02:23
  • 232 - Summary Statistics Case Study For Average.mp4
    05:27
  • 233 - Summary Statistics IQR.mp4
    04:31
  • 234 - Summary Statistics Variance.mp4
    04:57
  • 235 - Summary Statistics Standard Deviation.mp4
    03:51
  • 236 - Summary Statistics Averages in Python.mp4
    07:46
  • 237 - Summary Statistics Std Deviation and Variance in Python.mp4
    02:57
  • 238 - Summary Statistics IQR in Python.mp4
    04:29
  • 239 - Hypothesis Testing Module Introduction.mp4
    03:32
  • 240 - Hypothesis Testing Hypothesis Testing Overview.mp4
    01:43
  • 241 - Hypothesis Testing Terminologies in Hypothesis Testing.mp4
    03:10
  • 242 - Hypothesis Testing Null Hypothesis.mp4
    03:36
  • 243 - Hypothesis Testing Alternate Hypothesis.mp4
    03:23
  • 244 - Hypothesis Testing Test Statistics.mp4
    01:52
  • 245 - Hypothesis Testing PValue.mp4
    03:13
  • 246 - Hypothesis Testing Critical Value.mp4
    03:18
  • 247 - Hypothesis Testing Level of Significance.mp4
    01:41
  • 248 - Hypothesis Testing Case Study 1.mp4
    03:07
  • 249 - Hypothesis Testing Case Study 2.mp4
    06:17
  • 250 - Hypothesis Testing Calculations for Python.mp4
    04:10
  • 251 - Hypothesis Testing Steps of Hypothesis Testing.mp4
    00:59
  • 252 - Hypothesis Testing Code Outcomes.mp4
    04:30
  • 253 - Hypothesis Testing Calculation of Z in Python.mp4
    04:25
  • 254 - Hypothesis Testing Norm Function.mp4
    04:45
  • 255 - Hypothesis Testing P Value Python.mp4
    05:41
  • 256 - Correlation and Regression Module Introduction.mp4
    02:14
  • 257 - Correlation and Regression Covariance and Correlation.mp4
    03:33
  • 258 - Correlation and Regression Correlation.mp4
    04:14
  • 259 - Correlation and Regression Regression.mp4
    04:12
  • 260 - Correlation and Regression Correlation and Covariance in Python.mp4
    07:00
  • 261 - Correlation and Regression Entering Input.mp4
    03:20
  • 262 - Correlation and Regression Linear Regression Results.mp4
    07:33
  • 263 - Multiple Regression Module Overview.mp4
    01:24
  • 264 - Multiple Regression Motivation for Multiple Regression.mp4
    02:13
  • 265 - Multiple Regression Formula for MR.mp4
    02:46
  • 266 - Multiple Regression Preparing the Data.mp4
    02:59
  • 267 - Multiple Regression Multiple Regression in Python.mp4
    06:09
  • Description


    Python Mastery for Data Science & Statistical Modeling: Basics to Advanced Applications in Data Analysis, Visualization

    What You'll Learn?


    • Solid grasp of Python programming for Data Science & Statistics
    • Practical experience through hands-on projects and case studies
    • Ability to apply Statistical Modeling techniques using Python
    • Understanding of real-world applications in Data Analysis and Machine Learning

    Who is this for?


  • Beginners in Python and Data Science
  • Python Enthusiasts looking to apply skills in Data Analysis
  • Aspiring Data Scientists seeking a strong foundation
  • Professionals aiming to enhance their statistical modeling skills
  • What You Need to Know?


  • No prior knowledge or experience is required. Everything is explained from absolute basics.
  • More details


    Description

    Unlock the world of data science and statistical modeling with our comprehensive course, Python for Data Science & Statistical Modeling.

    Whether you're a novice or looking to enhance your skills, this course provides a structured pathway to mastering Python for data science and delving into the fascinating world of statistical modeling.

    Module 1: Python Fundamentals for Data Science

    Dive into the foundations of Python for data science, where you'll learn the essentials that form the basis of your data journey.

    • Session 1: Introduction to Python & Data Science

    • Session 2: Python Syntax & Control Flow

    • Session 3: Data Structures in Python

    • Session 4: Introduction to Numpy & Pandas for Data Manipulation

    Module 2: Data Science Essentials with Python

    Explore the core components of data science using Python, including exploratory data analysis, visualization, and machine learning.

    • Session 5: Exploratory Data Analysis with Pandas & Numpy

    • Session 6: Data Visualization with Matplotlib, Seaborn & Bokeh

    • Session 7: Introduction to Scikit-Learn for Machine Learning in Python

    Module 3: Mastering Probability, Statistics & Machine Learning

    Gain in-depth knowledge of probability, statistics, and their seamless integration with Python's powerful machine learning capabilities.

    • Session 8: Difference between Probability and Statistics

    • Session 9: Set Theory and Probability Models

    • Session 10: Random Variables and Distributions

    • Session 11: Expectation, Variance, and Moments

    Module 4: Practical Statistical Modeling with Python

    Apply your understanding of probability and statistics to build statistical models and explore their real-world applications.

    • Session 12: Probability and Statistical Modeling in Python

    • Session 13: Estimation Techniques & Maximum Likelihood Estimate

    • Session 14: Logistic Regression and KL-Divergence

    • Session 15: Connecting Probability, Statistics & Machine Learning in Python

    Module 5: Statistical Modeling Made Easy

    Simplify statistical modeling with Python, covering summary statistics, hypothesis testing, correlation, and more.

    • Session 16: Overview of Summary Statistics in Python

    • Session 17: Introduction to Hypothesis Testing

    • Session 18: Null and Alternate Hypothesis with Python

    • Session 19: Correlation and Covariance in Python

    Module 6: Implementing Statistical Models

    Delve deeper into implementing statistical models with Python, including linear regression, multiple regression, and custom models.

    • Session 20: Linear Regression and Coefficients

    • Session 21: Testing for Correlation in Python

    • Session 22: Multiple Regression and F-Test

    • Session 23: Building Custom Statistical Models with Python Algorithms

    Module 7: Capstone Projects & Real-World Applications

    Put your skills to the test with hands-on projects, case studies, and real-world applications.

    • Session 24: Mini-projects integrating Python, Data Science & Statistics

    • Session 25: Case Study 1: Real-world applications of Statistical Models

    • Session 26: Case Study 2: Python-based Data Analysis & Visualization

    Module 8: Conclusion & Next Steps

    Wrap up your journey with a recap of key concepts and guidance on advancing your data science career.

    • Session 27: Recap & Summary of Key Concepts

    • Session 28: Continuing Your Learning Path in Data Science & Python

    Join us on this transformative learning adventure, where you'll gain the skills and knowledge to excel in data science, statistical modeling, and Python. Enroll now and embark on your path to data-driven success!



    Who Should Take This Course?

    • Aspiring Data Scientists

    • Data Analysts

    • Business Analysts

    • Students pursuing a career in data-related fields

    • Anyone interested in harnessing Python for data insights

    Why This Course?

    In today's data-driven world, proficiency in Python and statistical modeling is a highly sought-after skillset. This course empowers you with the knowledge and practical experience needed to excel in data analysis, visualization, and modeling using Python. Whether you're aiming to kickstart your career, enhance your current role, or simply explore the world of data, this course provides the foundation you need. 


    What You Will Learn:

    This course is structured to take you from Python fundamentals to advanced statistical modeling, equipping you with the skills to:

    • Master Python syntax and data structures for effective data manipulation

    • Explore exploratory data analysis techniques using Pandas and Numpy

    • Create compelling data visualizations using Matplotlib, Seaborn, and Bokeh

    • Dive into Scikit-Learn for machine learning in Python

    • Understand key concepts in probability and statistics

    • Apply statistical modeling techniques in real-world scenarios

    • Build custom statistical models using Python algorithms

    • Perform hypothesis testing and correlation analysis

    • Implement linear and multiple regression models

    • Work on hands-on projects and real-world case studies



    Keywords:

    Python for Data Science, Statistical Modeling, Data Analysis, Data Visualization, Machine Learning, Pandas, Numpy, Matplotlib, Seaborn, Bokeh, Scikit-Learn, Probability, Statistics, Hypothesis Testing, Regression Analysis, Data Insights, Python Syntax, Data Manipulation

    Who this course is for:

    • Beginners in Python and Data Science
    • Python Enthusiasts looking to apply skills in Data Analysis
    • Aspiring Data Scientists seeking a strong foundation
    • Professionals aiming to enhance their statistical modeling skills

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    We are a group of experts, PhDs and Practitioners of Artificial Intelligence, Computer Science, Machine Learning, and Statistics. Some of us work in big companies like Amazon, Google, Facebook, Microsoft, KPMG, BCG, and IBM.We decided to produce a series of courses mainly dedicated to beginners and newcomers on the techniques and methods of Machine Learning, Statistics, Artificial Intelligence, and Data Science. Initially, our objective was to help only those who wish to understand these techniques more easily and to be able to start without too much theory and without a long reading. Today we also publish a more complete course on some topics for a wider audience.Our courses have had phenomenal success. Our Courses have helped more than 100,000 students to master AI and Data Science.
    AI Sciences Team
    AI Sciences Team
    Instructor's Courses
    We are a group of experts, PhDs and Practitioners of Artificial Intelligence, Computer Science, Machine Learning, and Statistics. Some of us work in big companies like Amazon, Google, Facebook, Microsoft, KPMG, BCG, and IBM.We decided to produce a series of courses mainly dedicated to beginners and newcomers on the techniques and methods of Machine Learning, Statistics, Artificial Intelligence, and Data Science. Initially, our objective was to help only those who wish to understand these techniques more easily and to be able to start without too much theory and without a long reading. Today we also publish a more complete course on some topics for a wider audience.Our courses have had phenomenal success. Our Courses have helped more than 100,000 students to master AI and Data Science.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 264
    • duration 28:08:07
    • Release Date 2023/12/16