Companies Home Search Profile

Python for Machine Learning & Deep Learning in One Semester

Focused View

Zeeshan Ahmad

46:49:01

59 View
  • 1. Introduction of the course.mp4
    07:39
  • 2.1 Course Material.zip
  • 2. Course Material.html
  • 1. Introduction of the Section.mp4
    01:36
  • 2. What in Intelligence.mp4
    05:43
  • 3. Machine Learning.mp4
    03:46
  • 4. Supervised Machine Learning.mp4
    13:01
  • 5.1 5-Unsupervised Machine Learning.mp4
    03:26
  • 5. Unsupervised Machine Learning.mp4
    03:26
  • 6. Deep Learning.mp4
    07:14
  • 1. Introduction of the Section.mp4
    02:23
  • 2. Importing Dataset in Google Colab.mp4
    13:51
  • 3. Importing and Displaying Image in Google Colab.mp4
    08:01
  • 4. Importing more datasets.mp4
    04:43
  • 5. Uploading Course Material on your Google Drive.mp4
    02:31
  • 1. Introduction of the Section.mp4
    02:50
  • 2. Arithmetic With Python.mp4
    10:54
  • 3. Comparison and Logical Operations.mp4
    05:52
  • 4. Conditional Statements.mp4
    08:14
  • 5. Dealing With Numpy Arrays-Part01.mp4
    12:26
  • 6. Dealing With Numpy Arrays-Part02.mp4
    15:02
  • 7. Dealing With Numpy Arrays-Part03.mp4
    10:52
  • 8. Plotting and Visualization-Part01.mp4
    17:51
  • 9. Plotting and Visualization-Part02.mp4
    15:03
  • 10. Plotting and Visualization-Part03.mp4
    13:34
  • 11. Plotting and Visualization-Part04.mp4
    07:35
  • 12. Lists in Python.mp4
    20:27
  • 13. For Loops-Part01.mp4
    21:03
  • 14. For Loops-Part02.mp4
    20:36
  • 15. Strings.mp4
    13:16
  • 16. Print Formatting With Strings.mp4
    03:36
  • 17. Dictionaries-Part01.mp4
    07:47
  • 18. Dictionaries-Part02.mp4
    08:04
  • 19. Functions in Python-Part01.mp4
    08:15
  • 20. Functions in Python-Part02.mp4
    07:59
  • 21. Pandas-Part01.mp4
    06:57
  • 22. Pandas-Part02.mp4
    05:20
  • 23. Pandas-Part03.mp4
    08:54
  • 24. Pandas-Part04.mp4
    11:23
  • 25. Seaborn-Part01.mp4
    08:56
  • 26. Seaborn-Part02.mp4
    06:50
  • 27. Seaborn-Part03.mp4
    07:16
  • 28. Tuples.mp4
    07:05
  • 29. Classes in Python.mp4
    16:27
  • 1. Introduction of the Section.mp4
    03:09
  • 2. Need of Data Preprocessing.mp4
    04:02
  • 3. Data Normalization and Min-Max Scaling.mp4
    06:27
  • 4. Project01-Data Normalization and Min-Max Scaling-Part01.mp4
    09:16
  • 5. Project01-Data Normalization and Min-Max Scaling-Part02.mp4
    11:25
  • 6. Data Standardization.mp4
    04:23
  • 7. Project02-Data Standardization.mp4
    08:21
  • 8. Project03-Dealing With Missing Values.mp4
    16:37
  • 9. Project04-Dealing With Categorical Features.mp4
    14:53
  • 10. Project05-Feature Engineering.mp4
    09:05
  • 11. Project06-Feature Engineering by Window Method.mp4
    12:48
  • 1. Supervised Machine Learning.mp4
    01:16
  • 1. Introduction of the Section.mp4
    05:03
  • 2. Origin of the Regression.mp4
    13:11
  • 3. Definition of Regression.mp4
    03:49
  • 4. Requirement from Regression.mp4
    03:23
  • 5. Simple Linear Regression.mp4
    06:38
  • 6. Multiple Linear Regression.mp4
    04:32
  • 7. Target and Predicted Values.mp4
    03:50
  • 8. Loss Function.mp4
    04:08
  • 9. Regression With Least Square Method.mp4
    14:32
  • 10. Least Square Method With Numerical Example.mp4
    05:07
  • 11. Evaluation Metrics for Regression.mp4
    08:07
  • 12. Project01-Simple Regression-Part01.mp4
    09:41
  • 13. Project01-Simple Regression-Part02.mp4
    08:46
  • 14. Project01-Simple Regression-Part03.mp4
    18:26
  • 15. Project02-Multiple Regression-Part01.mp4
    10:49
  • 16. Project02-Multiple Regression-Part02.mp4
    10:37
  • 17. Project02-Multiple Regression-Part03.mp4
    15:46
  • 18. Project03-Another Multiple Regression.mp4
    15:04
  • 19. Regression by Gradient Descent.mp4
    09:58
  • 20. Project04-Simple Regression With Gradient Descent.mp4
    19:31
  • 21. Project05-Multiple Regression With Gradient Descent.mp4
    15:31
  • 22. Polynomial Regression.mp4
    06:30
  • 23. Project06-Polynomial Regression.mp4
    12:10
  • 24. Cross-validation.mp4
    03:32
  • 25. Project07-Cross-validation.mp4
    13:57
  • 26. Underfitting and Overfitting ( Bias-Variance Tradeoff ).mp4
    12:04
  • 27. Concept of Regularization.mp4
    04:31
  • 28. Ridge Regression OR L2 Regularization.mp4
    09:55
  • 29. Lasso Regression OR L1 Regularization.mp4
    08:02
  • 30. Comparing Ridge and Lasso Regression.mp4
    03:06
  • 31. Elastic Net Regularization.mp4
    03:16
  • 32. Project08-Regularizations.mp4
    21:18
  • 33. Grid search Cross-validation.mp4
    04:02
  • 34. Project09-Grid Search Cross-validation.mp4
    20:31
  • 1. Introduction of the Section.mp4
    02:21
  • 2. Fundamentals of Logistic Regression.mp4
    07:34
  • 3. Limitations of Regression Models.mp4
    09:26
  • 4. Transforming Linear Regression into Logistic Regression.mp4
    08:05
  • 5. Project01-Getting Class Probabilities-Part01.mp4
    08:23
  • 6. Project01-Getting Class Probabilities-Part02.mp4
    11:31
  • 7. Loss Function.mp4
    05:33
  • 8. Model Evaluation-Confusion Matrix.mp4
    10:14
  • 9. Accuracy, Precision, Recall and F1-Score.mp4
    14:02
  • 10. ROC Curves and Area Under ROC.mp4
    03:42
  • 11. Project02-Evaluating Logistic Regression Model.mp4
    21:27
  • 12. Project03-Cross-validation With Logistic Regression Model.mp4
    17:01
  • 13. Project04-Multiclass Classification.mp4
    21:46
  • 14. Project05-Classification With Challenging Dataset-Part01.mp4
    07:14
  • 15. Project05-Classification With Challenging Dataset-Part02.mp4
    05:56
  • 16. Project05-Classification With Challenging Dataset-Part03.mp4
    07:45
  • 17. Grid Search Cross-validation With Logistic Regression.mp4
    13:14
  • 1. Introduction of the Section.mp4
    01:34
  • 2. Intuition Behind KNN.mp4
    04:39
  • 3. Steps of KNN Algorithm.mp4
    04:07
  • 4. Numerical Example on KNN Algorithm.mp4
    07:13
  • 5. Project01-KNN Algorithm-Part01.mp4
    09:01
  • 6. Project01-KNN Algorithm-Part02.mp4
    11:54
  • 7. Finding Optimal Value of K.mp4
    02:56
  • 8. Project02-Implementing KNN.mp4
    15:44
  • 9. Project03-Implementing KNN.mp4
    09:40
  • 10. Project04-Implementing KNN.mp4
    17:50
  • 11. Advantages and disadvantages of KNN.mp4
    03:37
  • 1. Introduction of the section.mp4
    03:00
  • 2. Fundamentals of Probability.mp4
    12:44
  • 3. Conditional Probability and Bayes Theorem.mp4
    08:08
  • 4. Numerical Example on Bayes Theorem.mp4
    05:13
  • 5. Naive Bayes Classification.mp4
    09:40
  • 6. Comparing Naive Bayes Classification With Logistic Regression.mp4
    03:58
  • 7. Project01 Naive Bayes as probabilistic classifier.mp4
    08:30
  • 8. Project02 Comparing Naive Bayes and Logistic Regression.mp4
    15:40
  • 9. Project03 Multiclass Classification With Naive Bayes Classifier.mp4
    23:58
  • 1. Introduction of the Section.mp4
    01:42
  • 2. Basic Concept of SVM.mp4
    07:01
  • 3. Maths of SVM.mp4
    13:41
  • 4. Hard and Soft Margin Classifier.mp4
    05:32
  • 5. Decision rules of SVM.mp4
    03:57
  • 6. Kernel trick in SVM.mp4
    07:23
  • 7. Project01-Understanding SVM-Part01.mp4
    20:05
  • 8. Project01-Understanding SVM-Part02.mp4
    10:11
  • 9. Project02-Multiclass Classification With SVM.mp4
    12:19
  • 10. Project03-Grid Search CV-Part01.mp4
    16:32
  • 11. Project03-Grid Search CV-Part02.mp4
    01:56
  • 12. Project04-Breast Cancer Classification with SVM.mp4
    07:53
  • 1. Introduction of the Section.mp4
    02:30
  • 2. Concept of Decision Tree.mp4
    06:03
  • 3. Important terms related to decision tree.mp4
    05:30
  • 4. Entropy-An information gain criterion.mp4
    05:42
  • 5. Numerical Example on Entropy-Part01.mp4
    21:56
  • 6. Numerical Example on Entropy-Part02.mp4
    13:34
  • 7. Gini Impurity - An information criterion.mp4
    02:50
  • 8. Numerical Example on Gini Impurity.mp4
    19:21
  • 9. Project01-Decision Tree Implementation.mp4
    14:42
  • 10. Project02-Breast Cancer Classification With Decision Tree.mp4
    07:58
  • 11. Project03-Grid Search CV with Decision Tree.mp4
    22:02
  • 1. Introduction of the Section.mp4
    01:48
  • 2. Why Random Forest.mp4
    04:01
  • 3. Working of Random Forest.mp4
    04:18
  • 4. Hyperparameters of Random Forest.mp4
    08:18
  • 5. Bootstrap sampling and OOB Error.mp4
    07:51
  • 6. Project01-Random Forest-Part01.mp4
    10:12
  • 7. Project01-Random Forest-Part02.mp4
    08:05
  • 8. Project02-Random Forest-Part01.mp4
    10:27
  • 9. Project02-Random Forest-Part02.mp4
    07:14
  • 1. Introduction of the Section.mp4
    01:10
  • 2. AdaBoost (Adaptive Boosting ).mp4
    11:08
  • 3. Numerical Example on Adaboost.mp4
    21:18
  • 4. Project01-AdaBoost Classifier.mp4
    13:25
  • 5. Project02-AdaBoost Classifier.mp4
    12:52
  • 6. Gradient Boosting.mp4
    02:50
  • 7. Numerical Example on Gradient Boosting.mp4
    11:36
  • 8. Project03-Gradient Boosting.mp4
    11:54
  • 9. Project04-Gradient Boosting.mp4
    13:17
  • 10. Extreme Gradient Boosting ( XGBoost ).mp4
    04:12
  • 11. Project05-XGBoost-Part01.mp4
    15:14
  • 12. Project05-XGBoost-Part02.mp4
    03:02
  • 1. Deep Learning.mp4
    01:44
  • 1. Introduction of the Section.mp4
    01:57
  • 2. The perceptron.mp4
    16:03
  • 3. Features, Weights and Activation Function.mp4
    07:01
  • 4. Learning of Neural Network.mp4
    09:34
  • 5. Rise of Deep Learning.mp4
    07:40
  • 1. Introduction of the Section.mp4
    01:49
  • 2. Classification by Perceptron-Part01.mp4
    07:27
  • 3. Classification by Perceptron-Part02.mp4
    07:07
  • 4. Need of Activation Functions.mp4
    06:54
  • 5. Adding Activation Function to Neural Network.mp4
    04:58
  • 6. Sigmoid as Activation Function.mp4
    08:01
  • 7. Hyperbolic Tangent Function.mp4
    05:08
  • 8. ReLU and Leaky ReLU Function.mp4
    06:19
  • 1. Introduction of the Section.mp4
    02:11
  • 2. MSE Loss Function.mp4
    04:14
  • 3. Cross Entropy Loss Function.mp4
    09:41
  • 4. Softmax Function.mp4
    08:34
  • 1. Introduction of the Section.mp4
    02:12
  • 2. Forward Propagation.mp4
    08:41
  • 3. Backward Propagation-Part01.mp4
    18:26
  • 4. Backward Propagation-Part02.mp4
    09:47
  • 1. Introduction of the Section.mp4
    01:43
  • 2. Project01-Neural Network for Simple Regression-Part01.mp4
    20:55
  • 3. Project01-Neural Network for Simple Regression-Part02.mp4
    18:54
  • 4. Project02 Neural Network for Multiple Regression.mp4
    14:04
  • 5. Creating Neural Network Using Python Class.mp4
    07:35
  • 1. Introduction of the Section.mp4
    02:59
  • 2. Epoch, Batch size and Iteration.mp4
    04:15
  • 3. Project00 Tensor Dataset and Data Loader.mp4
    15:40
  • 4. Code Preparation for Iris Dataset.mp4
    06:12
  • 5. Project01 Neural Network for Iris Data Classification.mp4
    16:42
  • 6. Code Preparation for MNIST dataset.mp4
    05:22
  • 7. Project02 Neural Network for MNIST data classification-Part01.mp4
    17:58
  • 8. Project02 Neural Network for MNIST data classification-Part02.mp4
    23:46
  • 9. Save and Load Trained model.mp4
    05:20
  • 10. Code Preparation for Custom Images.mp4
    05:29
  • 11. Project03-Neural Networks for Custom Images.mp4
    22:02
  • 12. Code Preparation for Human Action Recognition.mp4
    01:54
  • 13. Project04-Neural Network for Human Action Recognition.mp4
    16:51
  • 14. Project05-Neural Network for Feature Engineered Dataset.mp4
    10:14
  • 1. Introduction of the Section.mp4
    01:46
  • 2. Dropout Regularization.mp4
    11:35
  • 3. Introducing Dataset for dropout Regularization.mp4
    03:27
  • 4. Project01-Dropout Regularization.mp4
    27:12
  • 5. Project02-Dropout Regularization.mp4
    14:10
  • 6. Batch Normalization.mp4
    05:54
  • 7. Project03-Batch Normalization.mp4
    23:54
  • 8. Project04-Batch Normalization.mp4
    12:30
  • 1. Introduction of the Section.mp4
    02:20
  • 2. CNN Architecture and main operations.mp4
    03:22
  • 3. 2D Convolution.mp4
    09:51
  • 4. Shape of Feature Map after Convolution.mp4
    12:04
  • 5. Average and Maximum Pooling.mp4
    06:24
  • 6. Pooling to Classification.mp4
    03:54
  • 7. Project01-CNN on MNIST-Part01.mp4
    24:12
  • 8. Project01-CNN on MNIST-Part02.mp4
    11:04
  • 9. An Efficient Lazy Linear Layer.mp4
    04:56
  • 10. Project02 CNN on Custom Images.mp4
    13:33
  • 11. Transfer Learning.mp4
    05:57
  • 12. Project03-Transfer Learning With ResNet-18.mp4
    14:30
  • 13. Project04-Transfer Learning With VGG-16.mp4
    06:59
  • 1. Introduction of the Section.mp4
    02:12
  • 2. Why we need RNN .mp4
    03:00
  • 3. Sequential data.mp4
    05:15
  • 4. ANN to RNN.mp4
    07:40
  • 5. Back Propagation Through Time.mp4
    13:29
  • 6. Long-Short Term Memory ( LSTM ).mp4
    04:25
  • 7. LSTM Gates.mp4
    10:09
  • 8. Project01-LSTM Shapes.mp4
    24:58
  • 9. Project02-LSTM Basics.mp4
    13:40
  • 10. Batch size, Sequence length and Feature dimension.mp4
    11:30
  • 11. Project03-Interpolation and Extrapolation With LSTM.mp4
    22:14
  • 12. Project04- Data classification with LSTM.mp4
    16:38
  • 1. Introduction of the Section.mp4
    01:46
  • 2. Architecture of Autoencoder.mp4
    08:11
  • 3. Applications of Autoencoders.mp4
    07:03
  • 4. Project01-Image Denoising using Autoencoder.mp4
    16:39
  • 5. Project02-Occlusion Removing Using Autoencoder.mp4
    05:24
  • 6. Project03-Autoencoder as an Image Classifier.mp4
    13:29
  • 1. Introduction of the Section.mp4
    01:06
  • 2. Discriminative and Generative Models.mp4
    02:41
  • 3. Training of GAN.mp4
    06:14
  • 4. Project01 GAN Implementation.mp4
    23:26
  • 1. Unsupervised Machine Learning.mp4
    01:16
  • 1. Introduction of the Section.mp4
    01:41
  • 2. Steps of K-Means Clustering.mp4
    07:56
  • 3. Numerical Example- K-Means Clustering in One-D.mp4
    09:24
  • 4. Numerical Example-K-Means Clustering in 2D.mp4
    11:50
  • 5. Objective Function of K-Means Clustering.mp4
    01:59
  • 6. Selecting Optimal Number of Clusters ( Elbow Method ).mp4
    08:20
  • 7. Evaluating Metric for K-Means Clustering.mp4
    10:45
  • 8. Project01-K-Means Clustering-Part01.mp4
    14:14
  • 9. Project01-K-Means Clustering-Part02.mp4
    12:08
  • 10. Project01-K-Means Clustering-Part03.mp4
    03:09
  • 11. Project02-K-Means Clustering.mp4
    09:34
  • 12. Project03-K-Means Clustering.mp4
    08:00
  • 1. Introduction of the Section.mp4
    02:05
  • 2. Hierarchical Clustering Algorithm.mp4
    05:52
  • 3. Hierarchical Clustering in One-D.mp4
    04:50
  • 4. Dendrograms-Selecting Optimal Clusters-Part01.mp4
    07:00
  • 5. Dendrograms-Selecting Optimal Clusters-Part02.mp4
    06:53
  • 6. Hierarchical Clustering Using d-max criterion.mp4
    11:18
  • 7. Hierarchical Clustering in 2D.mp4
    06:43
  • 8. Evaluating Metrics for Hierarchical Clustering.mp4
    04:01
  • 9. Project01-Hierarchical Clustering-Part01.mp4
    12:29
  • 10. Project01-Hierarchical Clustering-Part02.mp4
    07:01
  • 11. Project02-Hierarchical Clustering.mp4
    06:34
  • 12. Project03-Hierarchical Clustering.mp4
    06:03
  • 1. Introduction of the Section.mp4
    01:27
  • 2. Definition of DBSCAN.mp4
    05:16
  • 3. Step by step DBSCAN.mp4
    07:55
  • 4. Comparing DBSCAN with K-Means Clustering.mp4
    08:50
  • 5. Project01-Part01.mp4
    07:05
  • 6. Project01-Part02.mp4
    08:49
  • 7. Parameters of DBSCAN.mp4
    07:02
  • 8. Project02-DBSCAN.mp4
    11:13
  • 1. Introduction of the Section.mp4
    01:24
  • 2. Definition of GMM Clustering.mp4
    02:29
  • 3. Limitations of K-Means Clustering.mp4
    07:27
  • 4. Project01-GMM Clustering.mp4
    17:16
  • 5. Project02-GMM Clustering.mp4
    12:54
  • 6. Project03-GMM Clustering.mp4
    09:51
  • 7. Binomial Distribution.mp4
    06:44
  • 8. Expectation Maximization (EM) Algorithm.mp4
    06:44
  • 9. Expectation Maximization (EM) Algorithm ( Numerical Example ).mp4
    16:12
  • 1. Introduction of the Section.mp4
    01:49
  • 2. Key Concepts of PCA.mp4
    05:19
  • 3. Need of PCA.mp4
    07:30
  • 4. PCA Algorithm With Numerical Example.mp4
    23:03
  • 5. Project01-PCA.mp4
    12:47
  • 6. Project02-PCA.mp4
    10:04
  • 7. Project03-PCA.mp4
    04:54
  • 8. Project04-PCA.mp4
    07:26
  • 9. Project05-PCA.mp4
    06:11
  • 10. Project06-PCA.mp4
    08:28
  • Description


    Practical Oriented Explanations by solving more than 80 projects with Numpy, Scikit-learn, Pandas, Matplotlib, Pytorch.

    What You'll Learn?


    • Theory, Maths and Implementation of machine learning and deep learning algorithms.
    • Classification Models used in classical Machine Learning such as Logistic Regression, KNN, Support Vector Machines, Decision Trees, and Random Forest
    • Build Artificial Neural Networks and use them for Regression and Classification Problems
    • Using GPU with Neural Networks and Deep Learning Models.
    • Convolutional Neural Networks
    • Transfer Learning
    • Recurrent Neural Networks and LSTM
    • Time series forecasting and classification.
    • Autoencoders
    • Generative Adversarial Networks (GANs)
    • Python from scratch
    • Numpy, Matplotlib, Seaborn, Pandas, Pytorch, Scikit-learn and other python libraries.
    • More than 80 projects solved with Machine Learning and Deep Learning models

    Who is this for?


  • Students in Machine Learning and Deep Learning course
  • Beginners Who want to Learn Machine Learning and Deep Learning from Scratch
  • Researchers in Artificial Intelligence
  • Students and Researchers who want to develop Python Programming skills to solve Machine Learning and Deep Learning Tasks
  • Those who know Matlab and Other Programming Languages and want to switch to Python for Machine Learning and Deep Learning
  • What You Need to Know?


  • Some Programming Knowledge is preferable but not necessary
  • Gmail account ( For Google Colab )
  • More details


    Description

    Introduction

    Introduction of the Course

    Introduction to Machine Learning and Deep Learning

    Introduction to Google Colab

    Python Crash Course

    Data Preprocessing


    Supervised Machine Learning

    Regression Analysis

    Logistic Regression

    K-Nearest Neighbor (KNN)

    Bayes Theorem and Naive Bayes Classifier

    Support Vector Machine (SVM)

    Decision Trees

    Random Forest

    Boosting Methods in Machine Learning

    Introduction to Neural Networks and Deep Learning

    Activation Functions

    Loss Functions

    Back Propagation

    Neural Networks for Regression Analysis

    Neural Networks for Classification

    Dropout Regularization and Batch Normalization

    Convolutional Neural Network (CNN)

    Recurrent Neural Network (RNN)

    Autoencoders

    Generative Adversarial Network (GAN)


    Unsupervised Machine Learning

    K-Means Clustering

    Hierarchical Clustering

    Density Based Spatial Clustering Of Applications With Noise (DBSCAN)

    Gaussian Mixture Model (GMM) Clustering

    Principal Component Analysis (PCA)


    What you’ll learn


    • Theory, Maths and Implementation of machine learning and deep learning algorithms.

    • Regression Analysis.

    • Classification Models used in classical Machine Learning such as Logistic Regression, KNN, Support Vector Machines, Decision Trees, Random Forest, and Boosting Methods in Machine Learning.

    • Build Artificial Neural Networks and use them for Regression and Classification Problems.

    • Using GPU with Deep Learning Models.

    • Convolutional Neural Networks

    • Transfer Learning

    • Recurrent Neural Networks

    • Time series forecasting and classification.

    • Autoencoders

    • Generative Adversarial Networks

    • Python from scratch

    • Numpy, Matplotlib, seaborn, Pandas, Pytorch, scikit-learn and other python libraries.

    • More than 80 projects solved with Machine Learning and Deep Learning models.


    Who this course is for:

    • Students in Machine Learning and Deep Learning course
    • Beginners Who want to Learn Machine Learning and Deep Learning from Scratch
    • Researchers in Artificial Intelligence
    • Students and Researchers who want to develop Python Programming skills to solve Machine Learning and Deep Learning Tasks
    • Those who know Matlab and Other Programming Languages and want to switch to Python for Machine Learning and Deep Learning

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Zeeshan Ahmad
    Zeeshan Ahmad
    Instructor's Courses
    Dr. Zeeshan is PhD in Electrical and Computer Engineering from Ryerson University Toronto. He has more than 18 years of teaching and research experience. He has taught many courses related to Computer and Electrical Engineering. His research interests include Machine learning, Deep learning, Computer vision, Signal and Image processing and multimodal fusion. He has publications in reputed journals and conferences.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 305
    • duration 46:49:01
    • Release Date 2023/10/04

    Courses related to Python

    Courses related to Machine Learning

    Courses related to Artificial Intelligence

    Courses related to Deep Learning