Companies Home Search Profile

Python for Finance: Investment Fundamentals and Data Analytics

Focused View

365 Careers Ltd.

7:08:26

166 View
  • 00001 What Does the Course Cover.mp4
    04:12
  • 00002 Python.mp4
    00:32
  • 00003 Why Python.mp4
    05:07
  • 00004 Jupyter.mp4
    00:31
  • 00005 Setting Up the Environment.mp4
    01:24
  • 00006 Programming Explained in 5 Minutes.mp4
    05:04
  • 00007 Why Jupyter.mp4
    03:29
  • 00008 Installing Anaconda.mp4
    04:00
  • 00009 Jupyter s Interface the Dashboard.mp4
    03:10
  • 00010 Jupyter s Interface Prerequisites for Coding.mp4
    06:09
  • 00011 Jupyter - Using Shortcuts.mp4
    03:07
  • 00012 Jupyter - Handling Error Messages.mp4
    05:52
  • 00013 Jupyter - Restarting the Kernel.mp4
    02:17
  • 00014 Python Variables.mp4
    04:52
  • 00015 Understanding Numbers and Boolean Values.mp4
    03:05
  • 00016 Strings.mp4
    05:40
  • 00017 The Arithmetic Operators of Python.mp4
    03:23
  • 00018 What is the Double Equality Sign.mp4
    01:33
  • 00019 How to Reassign Values.mp4
    01:08
  • 00020 How to Add Comments.mp4
    01:34
  • 00021 Understanding Line Continuation.mp4
    00:49
  • 00022 How to Index Elements.mp4
    01:18
  • 00023 How to Structure Your Code with Indentation.mp4
    01:44
  • 00024 Python Comparison Operators.mp4
    02:10
  • 00025 Python s Logical and Identity Operators.mp4
    05:35
  • 00026 Getting to Know the IF Statement.mp4
    03:01
  • 00027 Adding an ELSE statement.mp4
    02:45
  • 00028 Else if for Brief ELIF.mp4
    05:34
  • 00029 An Additional Explanation of Boolean Values.mp4
    02:13
  • 00030 How to Define a Function in Python.mp4
    02:02
  • 00031 How to Create a Function with a Parameter.mp4
    03:49
  • 00032 Another Way to Define a Function.mp4
    02:36
  • 00033 How to Use a Function within a Function.mp4
    01:49
  • 00034 Use Conditional Statements and Functions Together.mp4
    03:06
  • 00035 How to Create Functions that Contain a Few Arguments.mp4
    01:16
  • 00036 Built-In Functions in Python Worth Knowing.mp4
    03:56
  • 00037 Introduction to Lists.mp4
    04:02
  • 00038 Using Methods in Python.mp4
    03:19
  • 00039 What is List Slicing.mp4
    04:30
  • 00040 Working with Tuples.mp4
    03:11
  • 00041 Python Dictionaries.mp4
    04:04
  • 00042 Using For Loops.mp4
    02:56
  • 00043 Using While Loops and Incrementing.mp4
    02:25
  • 00044 Use the range Function to Create Lists.mp4
    03:49
  • 00045 Combine Conditional Statements and Loops.mp4
    03:11
  • 00046 All In Conditional Statements Functions and Loops.mp4
    02:27
  • 00047 How to Iterate over Dictionaries.mp4
    03:07
  • 00048 Object-Oriented Programming.mp4
    05:00
  • 00049 Modules Packages and the Python Standard Library.mp4
    04:24
  • 00050 Importing Modules.mp4
    03:24
  • 00051 What is Software Documentation.mp4
    03:57
  • 00052 The Python Documentation.mp4
    06:14
  • 00053 Must-Have Packages Fin DSc.mp4
    04:53
  • 00054 Arrays.mp4
    06:02
  • 00055 Generating Random Numbers.mp4
    02:52
  • 00056 Using Financial Data in Python.mp4
    02:39
  • 00057 Importing Data Part I.mp4
    03:44
  • 00058 Importing Data Part II.mp4
    07:01
  • 00059 Importing Data Part III.mp4
    04:19
  • 00060 Changing the Index of Your Time-Series Data.mp4
    03:17
  • 00061 Restarting the Jupyter Kernel.mp4
    02:17
  • 00062 Considering Both Risk and Return.mp4
    02:27
  • 00063 What are We Going to See Next.mp4
    02:34
  • 00064 Calculating a Security s Rate of Return.mp4
    05:31
  • 00065 Simple Returns Part I.mp4
    05:23
  • 00066 Simple Returns Part II.mp4
    03:28
  • 00067 Log Returns.mp4
    03:39
  • 00068 Portfolio of Securities and Calculating Rate of Return.mp4
    02:39
  • 00069 Calculating the Rate of Return of a Portfolio of Securities.mp4
    08:34
  • 00070 Popular Stock Indices.mp4
    03:31
  • 00071 Calculating the Return of Indices.mp4
    05:03
  • 00072 How Do We Measure a Security s Risk.mp4
    06:05
  • 00073 Calculating a Security s Risk in Python.mp4
    05:55
  • 00074 The Benefits of Portfolio Diversification.mp4
    03:28
  • 00075 Calculating the Covariance between Securities.mp4
    03:34
  • 00076 Measuring the Correlation between Securities.mp4
    03:59
  • 00077 Calculating Covariance and Correlation.mp4
    05:00
  • 00078 Considering the Risk of Multiple Securities.mp4
    03:19
  • 00079 Calculating Portfolio Risk.mp4
    02:38
  • 00080 Understanding Systematic Versus Idiosyncratic Risk.mp4
    02:58
  • 00081 Calculating Diversifiable and NonDiversifiable Risk.mp4
    04:28
  • 00082 Simple Regression Analysis.mp4
    03:55
  • 00083 Running a Regression in Python.mp4
    06:35
  • 00084 How to Distinguish Good Regressions.mp4
    04:55
  • 00085 Computing Alpha Beta and R2 in Python.mp4
    06:14
  • 00086 Markowitz Portfolio Theory.mp4
    06:34
  • 00087 Obtaining the Efficient Frontier Part I.mp4
    05:35
  • 00088 Obtaining the Efficient Frontier Part II.mp4
    05:18
  • 00089 Obtaining the Efficient Frontier Part III.mp4
    02:07
  • 00090 The Intuition Behind the CAPM.mp4
    04:44
  • 00091 Understanding and Calculating Beta.mp4
    04:14
  • 00092 Calculating the Beta of a Stock.mp4
    03:38
  • 00093 The CAPM Formula.mp4
    04:20
  • 00094 Calculating the Expected Return of a Stock.mp4
    02:16
  • 00095 Introducing the Sharpe Ratio.mp4
    02:21
  • 00096 Obtaining the Sharpe Ratio in Python.mp4
    01:22
  • 00097 Measuring Alpha.mp4
    04:13
  • 00098 Multivariate Regression Analysis.mp4
    05:42
  • 00099 Running a Multivariate Regression in Python.mp4
    06:20
  • 00100 The Essence of Monte Carlo Simulations.mp4
    02:31
  • 00101 Monte Carlo in Corporate Finance.mp4
    02:30
  • 00102 MC Predicting Gross Profit Part I.mp4
    06:03
  • 00103 MC Predicting Gross Profit Part II.mp4
    02:56
  • 00104 Forecasting Stock Prices with an MC Simulation.mp4
    04:27
  • 00105 MC Forecasting Stock Prices Part I.mp4
    03:39
  • 00106 MC Forecasting Stock Prices Part II.mp4
    04:38
  • 00107 MC Forecasting Stock Prices Part III.mp4
    04:17
  • 00108 An Introduction to Derivative Contracts.mp4
    06:32
  • 00109 The Black Scholes Formula.mp4
    04:51
  • 00110 MC Black Scholes Merton Updated.mp4
    06:00
  • 00111 MC Euler Discretization Part I.mp4
    06:21
  • 00112 MC Euler Discretization Part II.mp4
    02:09
  • Description


    This course will take you on a journey where you will learn how to code in Python. You will learn how to use Python in a real working environment and explore how Python can be applied in the world of finance to solve portfolio optimization problems.

    The first part of the course is ideal for beginners and people who want to brush up on their Python skills. Once we have covered the basics, we will be ready to tackle financial calculations and portfolio optimization tasks. The finance block of this course will teach you in-demand, real-world skills employers are looking for. This explains topics such as how to work with Python’s conditional statements, functions, sequences, and loops, build investment portfolios, and more.

    The code bundle for this video course is available at https://github.com/PacktPublishing/Python-for-Finance-Investment-Fundamentals-and-Data-Analytics

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    365 Careers Ltd.
    365 Careers Ltd.
    Instructor's Courses
    365 Careers’ courses have been taken by more than 203,000 students in 204 countries. People working at world-class firms such as Apple, PayPal, and Citibank have completed 365 Careers trainings. By choosing 365 Careers, you make sure you will learn from proven experts who have a passion for teaching, and can take you from beginner to pro in the shortest possible amount of time. If you want to become a financial analyst, a finance manager, an FP&A analyst, an investment banker, a business executive, an entrepreneur, a business intelligence analyst, a data analyst, or a data scientist, 365 Careers’ courses are the perfect place to start.
    Packt is a publishing company founded in 2003 headquartered in Birmingham, UK, with offices in Mumbai, India. Packt primarily publishes print and electronic books and videos relating to information technology, including programming, web design, data analysis and hardware.
    • language english
    • Training sessions 112
    • duration 7:08:26
    • Release Date 2023/02/26