Companies Home Search Profile

Python and R for Machine Learning & Deep Learning

Focused View

Manuel Ernesto Cambota

32:09:16

21 View
  • 1. Overview.mp4
    03:18
  • 1. Installing Python & Anaconda.mp4
    03:04
  • 2. Jupyter Overview.mp4
    13:26
  • 3. Python Basics.mp4
    04:28
  • 4. Python Basics 2.mp4
    19:07
  • 5. Python Basics 3.mp4
    18:41
  • 6. Numpy.mp4
    11:54
  • 7. Pandas.mp4
    09:15
  • 8. Seaborn.mp4
    08:57
  • 1. Installing R & Studio.mp4
    05:52
  • 2. R & R Studio - Basics.mp4
    10:47
  • 3. Packages in R.mp4
    10:52
  • 4. Inbuilt datasets of R.mp4
    04:21
  • 5. Manual data entry.mp4
    03:11
  • 6. Importing from CSV or Text files.mp4
    06:49
  • 7. Barplots.mp4
    13:42
  • 8. Histograms.mp4
    06:01
  • 1. Types of Data.mp4
    04:04
  • 2. Types of Statistics.mp4
    02:45
  • 3. Describing data Graphically.mp4
    11:37
  • 4. Measures of Centers.mp4
    07:05
  • 5. Measures of Dispersion.mp4
    04:37
  • 1. Introduction to Machine Learning.mp4
    16:03
  • 2. Building a Machine Learning Model.mp4
    08:42
  • 3. Gathering Business Knowledge.mp4
    03:19
  • 4. Data Exploration.mp4
    03:19
  • 5. Dataset & Data Dictionary.mp4
    07:28
  • 6. Importing Data in Python.mp4
    06:03
  • 7. Importing the dataset into R.mp4
    03:00
  • 8. Univariate analysis and EDD.mp4
    03:33
  • 9. EDD in Python.mp4
    12:11
  • 10. EDD in R.mp4
    12:43
  • 11. Outlier Treatment.mp4
    04:15
  • 12. Outlier Treatment in Python.mp4
    14:18
  • 13. Outlier Treatment in R.mp4
    04:49
  • 14. Missing Value Imputation.mp4
    03:36
  • 15. Missing Value Imputation in Python.mp4
    04:57
  • 16. Missing Value imputation in R.mp4
    03:49
  • 17. Seasonality in Data.mp4
    03:34
  • 18. Bi-variate analysis and Variable transformation.mp4
    16:14
  • 19. Variable transformation and deletion in Python.mp4
    09:21
  • 20. Variable transformation in R.mp4
    09:37
  • 21. Non-usable variables.mp4
    04:44
  • 22. Dummy variable creation Handling qualitative data.mp4
    04:50
  • 23. Dummy variable creation in Python.mp4
    05:45
  • 24. Dummy variable creation in R.mp4
    05:01
  • 25. Correlation Analysis.mp4
    10:05
  • 26. Correlation Analysis in Python.mp4
    07:07
  • 27. Correlation Matrix in R.mp4
    08:09
  • 28. The Problem Statement.mp4
    01:25
  • 29. Basic Equations and Ordinary Least Squares (OLS) method.mp4
    08:13
  • 30. Assessing accuracy of predicted coefficients.mp4
    14:40
  • 31. Assessing Model Accuracy RSE and R squared.mp4
    07:19
  • 32. Simple Linear Regression in Python.mp4
    14:06
  • 33. Simple Linear Regression in R.mp4
    07:40
  • 34. Multiple Linear Regression.mp4
    04:57
  • 35. The F - statistic.mp4
    08:22
  • 36. Interpreting results of Categorical variables.mp4
    05:04
  • 37. Multiple Linear Regression in Python.mp4
    14:13
  • 38. Multiple Linear Regression in R.mp4
    07:50
  • 39. Test-train split.mp4
    09:32
  • 40. Bias Variance trade-off.mp4
    06:01
  • 41. Test train split in Python.mp4
    10:19
  • 42. Test-Train Split in R.mp4
    08:44
  • 43. Regression models other than OLS.mp4
    04:18
  • 44. Subset selection techniques.mp4
    11:34
  • 45. SubShrinkage methods Ridge and Lassoset selection in R.mp4
    07:14
  • 46. Ridge regression and Lasso in Python.mp4
    23:50
  • 47. Heteroscedasticity.mp4
    02:30
  • 48. Ridge Regression and Lasso in R.mp4
    12:51
  • 49. importing the data into Python.mp4
    04:56
  • 50. Importing the data into R.mp4
    03:00
  • 51. Three Classifiers and the Problem statement.mp4
    03:17
  • 52. Why cant we use Linear Regression.mp4
    04:32
  • 53. Logistic Regression.mp4
    07:54
  • 54. Training a Simple Logistic Model in Python.mp4
    12:25
  • 55. Training a Simple Logistic model in R.mp4
    01:48
  • 56. Result of Simple Logistic Regression.mp4
    05:11
  • 57. Logistic with multiple predictors.mp4
    02:22
  • 58. Training multiple predictor Logistic model in Python.mp4
    06:05
  • 59. Training multiple predictor Logistic model in R.mp4
    01:48
  • 60. Confusion Matrix.mp4
    03:47
  • 61. Creating Confusion Matrix in Python.mp4
    09:55
  • 62. Evaluating performance of model.mp4
    07:40
  • 63. Evaluating model performance in Python.mp4
    02:21
  • 64. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4
    06:23
  • 65. Linear Discriminant Analysis.mp4
    09:42
  • 66. LDA in Python.mp4
    02:30
  • 67. Linear Discriminant Analysis in R.mp4
    09:10
  • 68. Test-Train Split.mp4
    09:30
  • 69. Test-Train Split in Python.mp4
    06:46
  • 70. Test-Train Split in R.mp4
    09:27
  • 71. K-Nearest Neighbors classifier.mp4
    08:41
  • 72. K-Nearest Neighbors in Python Part 1.mp4
    05:51
  • 73. K-Nearest Neighbors in Python Part 2.mp4
    07:00
  • 74. K-Nearest Neighbors in R.mp4
    08:50
  • 75. Understanding the results of classification models.mp4
    06:06
  • 76. Summary of the three models.mp4
    04:32
  • 77. Basics of Decision Trees.mp4
    10:10
  • 78. Understanding a Regression Tree.mp4
    10:17
  • 79. Stopping criteria for controlling tree growth.mp4
    03:15
  • 80. Importing the Data set into Python.mp4
    05:40
  • 81. Importing the Data set into R.mp4
    06:26
  • 82. Missing value treatment in Python.mp4
    03:38
  • 83. Dummy Variable creation in Python.mp4
    04:58
  • 84. Dependent- Independent Data split in Python.mp4
    04:02
  • 85. Test-Train split in Python.mp4
    06:04
  • 86. Splitting Data into Test and Train Set in R.mp4
    05:30
  • 87. Creating Decision tree in Python.mp4
    03:47
  • 88. Building a Regression Tree in R.mp4
    14:18
  • 89. Evaluating model performance in Python.mp4
    04:10
  • 90. Plotting decision tree in Python.mp4
    04:58
  • 91. Pruning a tree.mp4
    04:16
  • 92. Pruning a tree in Python.mp4
    10:37
  • 93. Pruning a Tree in R.mp4
    09:18
  • 94. Ensemble technique 1 - Bagging.mp4
    06:39
  • 95. Ensemble technique 1 - Bagging in Python.mp4
    11:05
  • 96. Bagging in R.mp4
    06:20
  • 97. Ensemble technique 2 - Random Forests.mp4
    03:56
  • 98. Ensemble technique 2 - Random Forests in Python.mp4
    06:06
  • 99. Using Grid Search in Python.mp4
    12:14
  • 100. Random Forest in R.mp4
    03:58
  • 101. Boosting.mp4
    07:10
  • 102. Ensemble technique 3a - Boosting in Python.mp4
    05:08
  • 103. Gradient Boosting in R.mp4
    07:10
  • 104. Ensemble technique 3b - AdaBoost in Python.mp4
    04:00
  • 105. AdaBoosting in R.mp4
    09:44
  • 106. Ensemble technique 3c - XGBoost in Python.mp4
    11:07
  • 107. XGBoosting in R.mp4
    16:08
  • 108. Content Flow.mp4
    01:34
  • 109. Concept of a Hyperplane.mp4
    04:55
  • 110. Maximum Margin Classifier.mp4
    03:18
  • 111. Limitations of Maximum Margin Classifier.mp4
    02:28
  • 112. Support Vector classifiers.mp4
    10:00
  • 113. Limitations of Support Vector Classifiers.mp4
    01:34
  • 114. Kernel Based Support Vector Machines.mp4
    06:45
  • 115. Regression and Classification Models.mp4
    00:46
  • 116. Importing and preprocessing data in Python.mp4
    05:40
  • 117. Standardizing the data.mp4
    06:28
  • 118. SVM based Regression Model in Pytho.mp4
    10:08
  • 119. Classification model - Preprocessing.mp4
    08:25
  • 120. Classification model - Standardizing the data.mp4
    01:57
  • 121. SVM Based classification model.mp4
    11:28
  • 122. Hyper Parameter Tuning.mp4
    09:47
  • 123. Polynomial Kernel with Hyperparameter Tuning.mp4
    04:07
  • 124. Radial Kernel with Hyperparameter Tuning.mp4
    06:31
  • 125. Importing and preprocessing data in R.mp4
    08:00
  • 126. Classification SVM model using Linear Kernel.mp4
    16:11
  • 127. Hyperparameter Tuning for Linear Kernel.mp4
    06:28
  • 128. Polynomial Kernel with Hyperparameter Tuning.mp4
    10:19
  • 129. Radial Kernel with Hyperparameter Tuning.mp4
    06:31
  • 130. SVM based Regression Model in R.mp4
    11:14
  • 1. Introduction to Neural Networks and Course flow.mp4
    04:38
  • 2. Perceptron.mp4
    09:47
  • 3. Activation Functions.mp4
    07:30
  • 4. Python - Creating Perceptron model.mp4
    14:10
  • 5. Basic Terminologies.mp4
    09:47
  • 6. Gradient Descent.mp4
    12:17
  • 7. Back Propagation.mp4
    22:27
  • 8. Some Important Concepts.mp4
    12:44
  • 9. Hyperparameter.mp4
    08:19
  • 1. Keras and Tensorflow.mp4
    03:04
  • 2. Installing Tensorflow and Keras.mp4
    04:04
  • 3. Dataset for classification.mp4
    07:19
  • 4. Normalization and Test-Train split.mp4
    05:59
  • 5. Different ways to create ANN using Keras.mp4
    01:58
  • 6. Building the Neural Network using Keras.mp4
    12:24
  • 7. Compiling and Training the Neural Network model.mp4
    10:34
  • 8. Evaluating performance and Predicting using Keras.mp4
    09:21
  • 9. Building Neural Network for Regression Problem.mp4
    22:10
  • 10. Using Functional API for complex architectures.mp4
    12:40
  • 11. Saving - Restoring Models and Using Callbacks.mp4
    19:49
  • 12. Hyperparameter Tuning.mp4
    09:05
  • 1. Installing Keras and Tensorflow.mp4
    02:54
  • 2. Data Normalization and Test-Train Split.mp4
    12:00
  • 3. Building,Compiling and Training.mp4
    14:57
  • 4. Evaluating and Predicting.mp4
    09:46
  • 5. ANN with NeuralNets Package.mp4
    08:07
  • 6. Building Regression Model with Functional API.mp4
    12:34
  • 7. Complex Architectures using Functional API.mp4
    08:50
  • 8. Saving - Restoring Models and Using Callbacks.mp4
    20:16
  • 1. CNN Introduction.mp4
    07:42
  • 2. Stride.mp4
    02:51
  • 3. Padding.mp4
    05:07
  • 4. Filters and Feature maps.mp4
    07:48
  • 5. Channels.mp4
    06:31
  • 6. PoolingLayer.mp4
    05:32
  • 7. CNN model in Python - Preprocessing.mp4
    05:42
  • 8. CNN model in Python - structure and Compile.mp4
    06:24
  • 9. CNN model in Python - Training and results.mp4
    06:50
  • 10. Comparison - Pooling vs Without Pooling in Python.mp4
    06:20
  • 11. CNN on MNIST Fashion Dataset - Model Architecture.mp4
    02:04
  • 12. Data Preprocessin.mp4
    07:08
  • 13. Creating Model Architecture.mp4
    06:04
  • 14. Compiling and training.mp4
    02:53
  • 15. Model Performance.mp4
    06:26
  • 16. Comparison - Pooling vs Without Pooling in R.mp4
    04:33
  • 1. Project - Introduction.mp4
    07:04
  • 2. Data for the project.html
  • 3. Project - Data Preprocessing in Python.mp4
    09:19
  • 4. Project - Training CNN model in Python.mp4
    09:05
  • 5. Project in Python - model results.mp4
    03:07
  • 6. Project in R - Data Preprocessing.mp4
    10:28
  • 7. CNN Project in R - Structure and Compile.mp4
    04:59
  • 8. Project in R - Training.mp4
    02:57
  • 9. Project in R - Model Performance.mp4
    02:22
  • 10. Project in R - Data Augmentation.mp4
    07:12
  • 11. Project in R - Validation Performanc.mp4
    02:24
  • 12. Project - Data Augmentation Preprocessing.mp4
    06:46
  • 13. Project - Data Augmentation Training and Results.mp4
    06:26
  • 1. ILSVRC.mp4
    04:10
  • 2. LeNET.mp4
    01:31
  • 3. VGG16NET.mp4
    02:00
  • 4. GoogLeNet.mp4
    02:52
  • 5. Transfer Learning.mp4
    05:15
  • 6. Project - Transfer Learning - VGG16.mp4
    19:40
  • 7. Project - Transfer Learning - VGG16 (Implementation).mp4
    12:44
  • 8. Project - Transfer Learning - VGG16 (Performance).mp4
    08:02
  • 1. Introduction.mp4
    02:10
  • 2. Time Series Forecasting - Use cases.mp4
    02:25
  • 3. Forecasting model creation - Steps.mp4
    02:46
  • 4. Forecasting model creation - Steps 1 (Goal).mp4
    06:03
  • 5. Time Series - Basic Notations.mp4
    09:02
  • 1. Data Loading in Python.mp4
    17:51
  • 2. Time Series - Visualization Basics.mp4
    09:28
  • 3. Time Series - Visualization in Python.mp4
    27:10
  • 4. Time Series - Feature Engineering Basics.mp4
    11:03
  • 5. Time Series - Feature Engineering in Python.mp4
    18:01
  • 6. Time Series - Upsampling and Downsampling.mp4
    04:17
  • 7. Time Series - Upsampling and Downsampling in Python.mp4
    16:45
  • 8. Time Series - Power Transformation.mp4
    02:32
  • 9. Moving Average.mp4
    07:12
  • 10. Exponential Smoothing.mp4
    02:07
  • 11. White Noise.mp4
    02:29
  • 12. Random Walk.mp4
    04:23
  • 13. Decomposing Time Series in Python.mp4
    09:41
  • 14. Differencing.mp4
    06:16
  • 15. Differencing in Python.mp4
    15:07
  • 16. Test Train Split in Python.mp4
    11:28
  • 17. Naive (Persistence) model in Python.mp4
    07:54
  • 18. Auto Regression Model - Basics.mp4
    03:29
  • 19. Auto Regression Model creation in Python.mp4
    09:22
  • 20. Auto Regression with Walk Forward validation in Python.mp4
    08:20
  • 21. Moving Average model -Basics.mp4
    04:33
  • 22. Moving Average model in Python.mp4
    08:58
  • 1. ACF and PACF.mp4
    08:07
  • 2. ARIMA model - Basics.mp4
    04:43
  • 3. ARIMA model in Python.mp4
    13:15
  • 4. ARIMA model with Walk Forward Validation in Python.mp4
    05:24
  • 1. SARIMA model.mp4
    07:26
  • 2. SARIMA model in Python.mp4
    10:40
  • 3. Stationary time Series.mp4
    01:42
  • Description


    Learn Machine Learning and Deep Learning using Python and R in 2024

    What You'll Learn?


    • Basics to advanced Python programming
    • Data manipulation with Pandas
    • Visualization with Matplotlib and Seaborn
    • Fundamentals of R
    • Statistical modeling in R
    • Introduction to neural networks
    • Building models with TensorFlow and Keras
    • Convolutional and Recurrent Neural Networks
    • Comprehensive understanding of machine learning and deep learning

    Who is this for?


  • IT Professionals: Broaden your career prospects by transitioning into the field of data science
  • Students: Whether you’re an undergraduate or a postgraduate student, this course provides a robust framework for understanding machine learning and deep learning concepts
  • Career Changers: Looking to pivot into a rapidly growing field with immense opportunities? This course will provide you with the necessary skills and knowledge to make a successful transition into data science and machine learning.
  • Entrepreneurs and Business Owners: Leverage the power of machine learning and deep learning to drive business innovation and efficiency. Understand how to implement data-driven strategies to improve decision-making and gain a competitive edge.
  • Anyone Interested in Data Science: If you have a passion for data and a desire to learn how to extract valuable insights from it, this course is for you. Gain a comprehensive understanding of machine learning and deep learning, regardless of your current level of expertise.
  • What You Need to Know?


  • No Pre-requisites
  • More details


    Description

    Welcome to the gateway to your journey into Python for Machine Learning & Deep Learning!

    Unlock the power of Python and delve into the realms of Machine Learning and Deep Learning with our comprehensive course. Whether you're a beginner eager to step into the world of artificial intelligence or a seasoned professional looking to enhance your skills, this course is designed to cater to all levels of expertise.

    What sets this course apart?

    1. Comprehensive Curriculum: Our meticulously crafted curriculum covers all the essential concepts of Python programming, machine learning algorithms, and deep learning architectures. From the basics to advanced techniques, we've got you covered.

    2. Hands-On Projects: Theory is important, but practical experience is paramount. Dive into real-world projects that challenge you to apply what you've learned and reinforce your understanding.

    3. Expert Guidance: Learn from industry expert who has years of experience in the field. Benefit from his insights, tips, and best practices to accelerate your learning journey.

    4. Interactive Learning: Engage in interactive lessons, quizzes, and exercises designed to keep you motivated and actively involved throughout the course.

    5. Flexibility: Life is busy, and we understand that. Our course offers flexible scheduling options, allowing you to learn at your own pace and convenience.

    6. Career Opportunities: Machine Learning and Deep Learning are in high demand across various industries. By mastering these skills, you'll open doors to exciting career opportunities and potentially higher earning potential.

    Are you ready to embark on an exhilarating journey into the world of Python for Machine Learning & Deep Learning? Enroll now and take the first step towards becoming a proficient AI practitioner!

    Who this course is for:

    • IT Professionals: Broaden your career prospects by transitioning into the field of data science
    • Students: Whether you’re an undergraduate or a postgraduate student, this course provides a robust framework for understanding machine learning and deep learning concepts
    • Career Changers: Looking to pivot into a rapidly growing field with immense opportunities? This course will provide you with the necessary skills and knowledge to make a successful transition into data science and machine learning.
    • Entrepreneurs and Business Owners: Leverage the power of machine learning and deep learning to drive business innovation and efficiency. Understand how to implement data-driven strategies to improve decision-making and gain a competitive edge.
    • Anyone Interested in Data Science: If you have a passion for data and a desire to learn how to extract valuable insights from it, this course is for you. Gain a comprehensive understanding of machine learning and deep learning, regardless of your current level of expertise.

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Manuel Ernesto Cambota
    Manuel Ernesto Cambota
    Instructor's Courses
    ------------------PORTUGUESE-------------------------Formado em Engenharia de Computação pela Universidade Técnica de Angola, actua nas áreas de Análise e desenvolvimento de sistemas com cerca de 10 anos de experiência.Trabalha com SAP, Bancos de Dados, Java, JSF, Hibernate, Primefaces, Bootstrap, PHP e .NET. É apaixonado pelas novas tecnologias de informação, pelo Ensino a distância, pelo Sporting de Portugal, pelo Barcelona FC e pela Selecção brasileira de Futebol(mesmo não sendo brasileiro). ------------------ENGLISH-------------------------I'm graduated in Computer Engineering at Technical University of Angola. I work in the areas of Analysis and systems development, haveing about 10 years of experience. I use SAP,  Databases, Java, JSF, Hibernate, Primefaces, Bootstrap, PHP and .NET. I am passionate about  Information Technologies, e-learning, Sporting  Portugal FC, Barcelona FC and the Brazilian national football team (even though I'm not Brazilian).
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 251
    • duration 32:09:16
    • Release Date 2024/08/12