Companies Home Search Profile

Probability and Statistics for Machine Learning

Focused View

8:57:30

76 View
  • 00001 Probability and Statistics for Machine Learning - Introduction.mp4
    03:21
  • 00002 Topics.mp4
    00:37
  • 00003 1.1 Orientation to the Machine Learning Foundations Series.mp4
    02:48
  • 00004 1.2 What Probability Theory Is.mp4
    07:04
  • 00005 1.3 Events and Sample Spaces.mp4
    04:56
  • 00006 1.4 Multiple Observations.mp4
    05:58
  • 00007 1.5 Factorials and Combinatorics.mp4
    04:49
  • 00008 1.6 Exercises.mp4
    08:52
  • 00009 1.7 The Law of Large Numbers and the Gambler s Fallacy.mp4
    11:17
  • 00010 1.8 Probability Distributions in Statistics.mp4
    05:23
  • 00011 1.9 Bayesian versus Frequentist Statistics.mp4
    08:43
  • 00012 1.10 Applications of Probability to Machine Learning.mp4
    08:47
  • 00013 Topics.mp4
    00:35
  • 00014 2.1 Discrete and Continuous Variables.mp4
    04:51
  • 00015 2.2 Probability Mass Functions.mp4
    05:56
  • 00016 2.3 Probability Density Functions.mp4
    04:09
  • 00017 2.4 Exercises on Probability Functions.mp4
    02:30
  • 00018 2.5 Expected Value.mp4
    06:21
  • 00019 2.6 Exercises on Expected Value.mp4
    04:26
  • 00020 Topics.mp4
    00:22
  • 00021 3.1 The Mean a Measure of Central Tendency.mp4
    07:19
  • 00022 3.2 Medians.mp4
    02:56
  • 00023 3.3 Modes.mp4
    06:22
  • 00024 3.4 Quantiles - Percentiles Quartiles and Deciles.mp4
    07:44
  • 00025 3.5 Box-and-Whisker Plots.mp4
    11:56
  • 00026 3.6 Variance a Measure of Dispersion.mp4
    07:45
  • 00027 3.7 Standard Deviation.mp4
    03:21
  • 00028 3.8 Standard Error.mp4
    04:53
  • 00029 3.9 Covariance a Measure of Relatedness.mp4
    12:43
  • 00030 3.10. Correlation.mp4
    07:45
  • 00031 Topics.mp4
    00:21
  • 00032 4.1 Joint Probability Distribution.mp4
    03:56
  • 00033 4.2 Marginal Probability.mp4
    05:11
  • 00034 4.3 Conditional Probability.mp4
    06:14
  • 00035 4.4 Exercises.mp4
    05:38
  • 00036 4.5 Chain Rule of Probabilities.mp4
    03:35
  • 00037 4.6 Independent Random Variables.mp4
    03:24
  • 00038 4.7 Conditional Independence.mp4
    05:01
  • 00039 Topics.mp4
    00:42
  • 00040 5.1 Uniform.mp4
    04:14
  • 00041 5.2 Gaussian - Normal and Standard Normal.mp4
    08:41
  • 00042 5.3 The Central Limit Theorem.mp4
    15:28
  • 00043 5.4 Log-Normal.mp4
    02:29
  • 00044 5.5 Exponential and Laplace.mp4
    04:45
  • 00045 5.6 Binomial and Multinomial.mp4
    08:06
  • 00046 5.7 Poisson.mp4
    03:36
  • 00047 5.8 Mixture Distributions.mp4
    03:29
  • 00048 5.9 Preprocessing Data for Model Input.mp4
    03:21
  • 00049 5.10 Exercises.mp4
    02:48
  • 00050 Topics.mp4
    00:28
  • 00051 6.1 What Information Theory Is.mp4
    01:11
  • 00052 6.2 Self-Information Nats and Bits.mp4
    06:20
  • 00053 6.3 Shannon and Differential Entropy.mp4
    07:10
  • 00054 6.4 Kullback-Leibler Divergence and Cross-Entropy.mp4
    05:29
  • 00055 Topics.mp4
    00:35
  • 00056 7.1 Applications of Statistics to Machine Learning.mp4
    09:23
  • 00057 7.2 Review of Essential Probability Theory.mp4
    12:08
  • 00058 7.3 z-scores and Outliers.mp4
    10:06
  • 00059 7.4 Exercises on z-scores.mp4
    03:58
  • 00060 7.5 p-values.mp4
    13:32
  • 00061 7.6 Exercises on p-values.mp4
    06:38
  • 00062 Topics.mp4
    00:35
  • 00063 8.1 Single-Sample t-tests and Degrees of Freedom.mp4
    10:36
  • 00064 8.2 Independent t-tests.mp4
    12:57
  • 00065 8.3 Paired t-tests.mp4
    13:30
  • 00066 8.4 Applications to Machine Learning.mp4
    04:13
  • 00067 8.5 Exercises.mp4
    07:55
  • 00068 8.6 Confidence Intervals.mp4
    10:27
  • 00069 8.7 ANOVA - Analysis of Variance.mp4
    03:09
  • 00070 Topics.mp4
    00:31
  • 00071 9.1 The Pearson Correlation Coefficient.mp4
    06:58
  • 00072 9.2 R-squared Coefficient of Determination.mp4
    02:55
  • 00073 9.3 Correlation versus Causation.mp4
    03:46
  • 00074 9.4 Correcting for Multiple Comparisons.mp4
    03:36
  • 00075 Topics.mp4
    00:45
  • 00076 10.1 Independent versus Dependent Variables.mp4
    05:23
  • 00077 10.2 Linear Regression to Predict Continuous Values.mp4
    07:16
  • 00078 10.3 Fitting a Line to Points on a Cartesian Plane.mp4
    15:45
  • 00079 10.4 Linear Least Squares Exercise.mp4
    05:09
  • 00080 10.5 Ordinary Least Squares.mp4
    13:09
  • 00081 10.6 Categorical Dummy Features.mp4
    17:45
  • 00082 10.7 Logistic Regression to Predict Categories.mp4
    13:23
  • 00083 10.8 Open-Ended Exercises.mp4
    03:58
  • 00084 Topics.mp4
    00:36
  • 00085 11.1 Machine Learning versus Frequentist Statistics.mp4
    07:03
  • 00086 11.2 When to Use Bayesian Statistics.mp4
    02:24
  • 00087 11.3 Prior Probabilities.mp4
    05:28
  • 00088 11.4 Bayes Theorem.mp4
    12:46
  • 00089 11.5 Resources for Further Study of Probability and Statistics.mp4
    02:03
  • 00090 Probability and Statistics for Machine Learning - Summary.mp4
    01:03
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Pearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
    • language english
    • Training sessions 90
    • duration 8:57:30
    • Release Date 2023/11/04