Companies Home Search Profile

PINNs Using NVIDIA Modulus

Focused View

Dr.Mohammad Samara

9:07:48

188 View
  • 1. Introduction.mp4
    03:55
  • 2. Course Structure.mp4
    05:04
  • 3. Installing Anaconda.mp4
    05:46
  • 4. Deep Learning Theory.mp4
    11:32
  • 5. PINNs Theory.mp4
    08:30
  • 1.1 links.txt
  • 1. Install PyTorch CUDA.mp4
    04:29
  • 2.1 basic 1 main.zip
  • 2. PyTorch Tensors Basics.mp4
    18:53
  • 3.1 basic 2 main.zip
  • 3. Tensors to NumPy arrays.mp4
    08:20
  • 4. Backpropagation Theory.mp4
    16:59
  • 5.1 basic bp main.zip
  • 5. Backpropagation using PyTorch.mp4
    05:54
  • 1.1 burgers 1d main.zip
  • 1. Define the Neural Network.mp4
    10:42
  • 2.1 burgers 1d main.zip
  • 2. Initial Conditions and Boundary Conditions.mp4
    24:42
  • 3.1 burgers 1d main.zip
  • 3. Optimizer.mp4
    06:31
  • 4.1 burgers 1d main.zip
  • 4. Loss Function.mp4
    18:08
  • 5.1 burgers 1d main.zip
  • 5. Train the Model.mp4
    12:06
  • 6.1 burgers 1d main.zip
  • 6. Results Evaluation.mp4
    08:56
  • 1.1 config main.zip
  • 1.2 post processing 1dwave main.zip
  • 1.3 wave 1d main.zip
  • 1.4 wave eq main.zip
  • 1.5 wave equation main.zip
  • 1. What is the Wave Equation.mp4
    09:48
  • 2.1 config main.zip
  • 2.2 post processing 1dwave main.zip
  • 2.3 wave 1d main.zip
  • 2.4 wave eq main.zip
  • 2.5 wave equation main.zip
  • 2. Setting Up Google Colab.mp4
    05:08
  • 3.1 config main.zip
  • 3.2 post processing 1dwave main.zip
  • 3.3 wave 1d main.zip
  • 3.4 wave eq main.zip
  • 3.5 wave equation main.zip
  • 3. Define the Wave Equation Function.mp4
    16:48
  • 4.1 config main.zip
  • 4.2 post processing 1dwave main.zip
  • 4.3 wave 1d main.zip
  • 4.4 wave eq main.zip
  • 4.5 wave equation main.zip
  • 4. Define the Config File.mp4
    08:49
  • 5.1 config main.zip
  • 5.2 post processing 1dwave main.zip
  • 5.3 wave 1d main.zip
  • 5.4 wave eq main.zip
  • 5.5 wave equation main.zip
  • 5. Import Needed Libraries.mp4
    11:13
  • 6.1 config main.zip
  • 6.2 post processing 1dwave main.zip
  • 6.3 wave 1d main.zip
  • 6.4 wave eq main.zip
  • 6.5 wave equation main.zip
  • 6. Set Up the main RUN File.mp4
    14:10
  • 7.1 config main.zip
  • 7.2 post processing 1dwave main.zip
  • 7.3 wave 1d main.zip
  • 7.4 wave eq main.zip
  • 7.5 wave equation main.zip
  • 7. Define the B.C, I.C, Interior Points.mp4
    11:41
  • 8.1 config main.zip
  • 8.2 post processing 1dwave main.zip
  • 8.3 wave 1d main.zip
  • 8.4 wave eq main.zip
  • 8.5 wave equation main.zip
  • 8. Add Validator Functionality.mp4
    08:35
  • 9.1 config main.zip
  • 9.2 post processing 1dwave main.zip
  • 9.3 wave 1d main.zip
  • 9.4 wave eq main.zip
  • 9.5 wave equation main.zip
  • 9. Solve.mp4
    16:09
  • 10.1 config main.zip
  • 10.2 post processing 1dwave main.zip
  • 10.3 wave 1d main.zip
  • 10.4 wave eq main.zip
  • 10.5 wave equation main.zip
  • 10. Results Extraction.mp4
    08:54
  • 11.1 config main.zip
  • 11.2 post processing 1dwave main.zip
  • 11.3 wave 1d main.zip
  • 11.4 wave eq main.zip
  • 11.5 wave equation main.zip
  • 11. Results Post Processing.mp4
    18:16
  • 1.1 cavity main.zip
  • 1.2 cavity post main.zip
  • 1.3 config.zip
  • 1.4 output main.csv
  • 1. Setting up env. in your personal computer.mp4
    08:05
  • 2.1 cavity main.zip
  • 2.2 cavity post main.zip
  • 2.3 config.zip
  • 2.4 output main.csv
  • 2. Cavity Flow Problem.mp4
    04:07
  • 3.1 cavity main.zip
  • 3.2 cavity post main.zip
  • 3.3 config.zip
  • 3.4 output main.csv
  • 3. Define the Config File.mp4
    07:11
  • 4.1 cavity main.zip
  • 4.2 cavity post main.zip
  • 4.3 config.zip
  • 4.4 output main.csv
  • 4. Import Needed Libraries.mp4
    10:07
  • 5.1 cavity main.zip
  • 5.2 cavity post main.zip
  • 5.3 config.zip
  • 5.4 output main.csv
  • 5. Set Up the main RUN File.mp4
    03:56
  • 6.1 cavity main.zip
  • 6.2 cavity post main.zip
  • 6.3 config.zip
  • 6.4 output main.csv
  • 6. Define the Navier-Stokes equation and DNN.mp4
    06:41
  • 7.1 cavity main.zip
  • 7.2 cavity post main.zip
  • 7.3 config.zip
  • 7.4 output main.csv
  • 7. Define the B.C, I.C, Interior Points.mp4
    16:46
  • 8.1 cavity main.zip
  • 8.2 cavity post main.zip
  • 8.3 config.zip
  • 8.4 output main.csv
  • 8. Solve.mp4
    11:47
  • 9.1 cavity main.zip
  • 9.2 cavity post main.zip
  • 9.3 config.zip
  • 9.4 output main.csv
  • 9. Results Extraction.mp4
    03:30
  • 10.1 cavity main.zip
  • 10.2 cavity post main.zip
  • 10.3 config.zip
  • 10.4 output main.csv
  • 10. Results Post Processing.mp4
    13:45
  • 11.1 cavity main.zip
  • 11.2 cavity post main inf.zip
  • 11.3 config.zip
  • 11.4 inf data.zip
  • 11. Pretrained Model Inference.mp4
    31:16
  • 1.1 config.zip
  • 1.2 flow out.csv
  • 1.3 force x.csv
  • 1.4 force y.csv
  • 1.5 heat out.csv
  • 1.6 heat sink main.zip
  • 1. 2d heat channel problem.mp4
    02:09
  • 2.1 config.zip
  • 2.2 heat sink main.zip
  • 2. Define the Config File.mp4
    10:50
  • 3.1 config.zip
  • 3.2 heat sink main.zip
  • 3. Import Needed Libraries.mp4
    20:58
  • 4.1 config.zip
  • 4.2 heat sink main.zip
  • 4. Set Up the main RUN File.mp4
    04:38
  • 5.1 config.zip
  • 5.2 heat sink main.zip
  • 5. Define the geometry.mp4
    15:13
  • 6.1 config.zip
  • 6.2 heat sink main.zip
  • 6. Define the Navier-Stokes equation and DNN.mp4
    16:02
  • 7.1 config.zip
  • 7.2 heat sink main.zip
  • 7. Define the B.C, I.C, Interior Points.mp4
    28:49
  • 8.1 config.zip
  • 8.2 heat sink main.zip
  • 8. Add Monitor.mp4
    04:15
  • 9.1 config.zip
  • 9.2 heat sink main.zip
  • 9. Solve.mp4
    13:30
  • 10.1 config.zip
  • 10.2 config.zip
  • 10.3 flow out.csv
  • 10.4 force x.csv
  • 10.5 force y.csv
  • 10.6 heat out.csv
  • 10. Results Extraction.mp4
    08:22
  • 11.1 config.zip
  • 11.2 flow out.csv
  • 11.3 flow out.csv
  • 11.4 force x.csv
  • 11.5 force y.csv
  • 11.6 heat sink main.zip
  • 11. Results Post Processing.mp4
    05:53
  • Description


    Easy Simulations with AI

    What You'll Learn?


    • Build PINNs based pdes solver.
    • Understand the Theory behind PINNs PDEs solvers.
    • Build models using NVIDIA Modulus
    • Deploy NVIDIA Modulus useing GoogleColab and your own NVIDIA GPU

    Who is this for?


  • Engineers and Programmers whom want to Learn PINNs
  • learn NVIDIA Modulus
  • What You Need to Know?


  • High School Math
  • Basic Python knowledge
  • More details


    Description

    Description

    This is a introductory course that will prepare you to work with Physics-Informed Neural Networks (PINNs) using NVIDIA Modulus. We will cover the fundamentals of Solving partial differential equations (PDEs) using Physics-Informed Neural Networks (PINNs) from its basics and March towards solving PINNs with Nvidia modulus.


    What skills will you Learn:

    In this course, you will learn the following skills:

    • Understand the Math behind solving partial differential equations (PDEs) with PINNs.

    • Write and build Machine Learning Algorithms to solve PINNs using Pytorch.

    • Write and build Machine Learning Algorithms to solve PINNs using Nvidia Modulus.

    • Postprocess the results.

    • Use opensource libraries.

    • Define your own PDEs to solve them or use built in equations (such as the N.S equations in Nvidia Modulus).


    We will cover:

    • How to deploy Nvidia Modulus on your own computer GPU and in Google Collab.

    • Physics-Informed Neural Networks (PINNs) Solution for 1D Burgers Equation using pytorch.

    • Physics-Informed Neural Networks (PINNs) Solution for  1D wave Equation using Nvidia modulus.

    • Physics-Informed Neural Networks (PINNs) Solution for  cavity flow problem using Nvidia modulus.

    • Physics-Informed Neural Networks (PINNs) Solution for  2D heat sink flow problem using Nvidia modulus.

    If you do not have prior experience in Machine Learning or Computational Engineering, that's no problem. This course is complete and concise, covering the fundamentals of Machine Learning/ Physics-Informed Neural Networks (PINNs). Let's enjoy Learning Nvidia Modulus together.

    Who this course is for:

    • Engineers and Programmers whom want to Learn PINNs
    • learn NVIDIA Modulus

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Dr.Mohammad Samara
    Dr.Mohammad Samara
    Instructor's Courses
    11 Years experience in Computation Models building, since 7 year I am mainly focused on the use of Data to build machine learning based models, to solve practical Industry problems such as data analysis, Value prediction, performance classification (abnormality detection), and applying Machine Learning to machine vision problems as well as system control and behavior mapping via Reinforcement learning using data collected from the testing and simulation.I Have a Phd and masters From the University of Tokyo, and worked in several  Japanese and International companies, currently I am working in Panasonic as a Data Science/Machine Learning Expert (Job Rank: Chief Engineer).I am absolutely passionate about Data Science use in Engineering companies and I am looking forward to sharing my passion and knowledge with you!
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 49
    • duration 9:07:48
    • Release Date 2024/06/25