Companies Home Search Profile

Pearson The Essential Machine Learning Foundations Math Probability Statistics And Computer Science

Focused View

28:06:56

122 View
  • 00000 Introduction.mp4
    02:54
  • 00001 Topics.mp4
    00:33
  • 00002 1.1 Defining Linear Algebra.mp4
    06:35
  • 00003 1.2 Solving a System of Equations Algebraically.mp4
    06:42
  • 00004 1.3 Linear Algebra in Machine Learning and Deep Learning.mp4
    10:51
  • 00005 1.4 Historical and Contemporary Applications.mp4
    07:36
  • 00006 1.5 Exercise.mp4
    08:49
  • 00007 Topics.mp4
    00:37
  • 00008 2.1 Tensors.mp4
    04:35
  • 00009 2.2 Scalars.mp4
    23:03
  • 00010 2.3 Vectors and Vector Transposition.mp4
    11:15
  • 00011 2.4 Norms and Unit Vectors.mp4
    15:35
  • 00012 2.5 Basis Orthogonal and Orthonormal Vectors.mp4
    04:47
  • 00013 2.6 Matrices.mp4
    07:39
  • 00014 2.7 Generic Tensor Notation.mp4
    04:46
  • 00015 2.8 Exercises.mp4
    02:11
  • 00016 Topics.mp4
    00:21
  • 00017 3.1 Tensor Transposition.mp4
    03:37
  • 00018 3.2 Basic Tensor Arithmetic.mp4
    05:56
  • 00019 3.3 Reduction.mp4
    04:39
  • 00020 3.4 The Dot Product.mp4
    06:04
  • 00021 3.5 Exercises.mp4
    05:38
  • 00022 Topics.mp4
    00:24
  • 00023 4.1 The Substitution Strategy.mp4
    03:40
  • 00024 4.2 Substitution Exercises.mp4
    08:41
  • 00025 4.3 The Elimination Strategy.mp4
    04:10
  • 00026 4.4 Elimination Exercises.mp4
    09:49
  • 00027 Topics.mp4
    00:40
  • 00028 5.1 Matrix-by-Vector Multiplication.mp4
    12:01
  • 00029 5.2 Matrix-by-Matrix Multiplication.mp4
    09:44
  • 00030 5.3 Symmetric and Identity Matrices.mp4
    05:13
  • 00031 5.4 Exercises.mp4
    08:31
  • 00032 5.5 Machine Learning and Deep Learning Applications.mp4
    11:45
  • 00033 Topics.mp4
    00:24
  • 00034 6.1 The Frobenius Norm.mp4
    03:39
  • 00035 6.2 Matrix Inversion.mp4
    16:15
  • 00036 6.3 Diagonal Matrices.mp4
    03:41
  • 00037 6.4 Orthogonal Matrices.mp4
    04:23
  • 00038 6.5 The Trace Operator.mp4
    03:45
  • 00039 Topics.mp4
    00:26
  • 00040 7.1 The Eigenconcept.mp4
    09:00
  • 00041 7.2 Exercises.mp4
    09:29
  • 00042 7.3 Eigenvectors in Python.mp4
    28:00
  • 00043 7.4 High-Dimensional Eigenvectors.mp4
    03:54
  • 00044 Topics.mp4
    00:38
  • 00045 8.1 The Determinant of a 2 x 2 Matrix.mp4
    06:02
  • 00046 8.2 The Determinants of Larger Matrices.mp4
    07:18
  • 00047 8.3 Exercises.mp4
    03:59
  • 00048 8.4 Determinants and Eigenvalues.mp4
    08:43
  • 00049 8.5 Eigendecomposition.mp4
    14:01
  • 00050 Topics.mp4
    00:43
  • 00051 9.1 Singular Value Decomposition.mp4
    08:09
  • 00052 9.2 Media File Compression.mp4
    06:57
  • 00053 9.3 The Moore-Penrose Pseudoinverse.mp4
    08:44
  • 00054 9.4 Regression via Pseudoinversion.mp4
    12:47
  • 00055 9.5 Principal Component Analysis.mp4
    06:57
  • 00056 9.6 Resources for Further Study of Linear Algebra.mp4
    03:16
  • 00057 Linear Algebra for Machine Learning Machine Learning Foundations - Summary.mp4
    01:11
  • 00058 Introduction.mp4
    02:46
  • 00059 Topics.mp4
    00:31
  • 00060 1.1 Differential versus Integral Calculus.mp4
    16:42
  • 00061 1.2 A Brief History.mp4
    07:22
  • 00062 1.3 Calculus of the Infinitesimals.mp4
    13:04
  • 00063 1.4 Modern Applications.mp4
    10:17
  • 00064 Topics.mp4
    00:35
  • 00065 2.1 Continuous versus Discontinuous Functions.mp4
    09:20
  • 00066 2.2 Solving via Factoring.mp4
    01:37
  • 00067 2.3 Solving via Approaching.mp4
    03:17
  • 00068 2.4 Approaching Infinity.mp4
    04:59
  • 00069 2.5 Exercises.mp4
    06:02
  • 00070 Topics.mp4
    00:37
  • 00071 3.1 Delta Method.mp4
    11:13
  • 00072 3.2 The Most Common Representation.mp4
    10:28
  • 00073 3.3 Derivative Notation.mp4
    04:12
  • 00074 3.4 Constants.mp4
    01:37
  • 00075 3.5 Power Rule.mp4
    01:33
  • 00076 3.6 Constant Product Rule.mp4
    03:17
  • 00077 3.7 Sum Rule.mp4
    02:08
  • 00078 3.8 Exercises.mp4
    08:54
  • 00079 Topics.mp4
    00:28
  • 00080 4.1 Product Rule.mp4
    03:33
  • 00081 4.2 Quotient Rule.mp4
    03:43
  • 00082 4.3 Chain Rule.mp4
    05:22
  • 00083 4.4 Exercises.mp4
    09:07
  • 00084 4.5 Power Rule on a Function Chain.mp4
    03:28
  • 00085 Topics.mp4
    00:31
  • 00086 5.1 Introduction.mp4
    03:41
  • 00087 5.2 Autodiff with PyTorch.mp4
    04:33
  • 00088 5.3 Autodiff with TensorFlow.mp4
    02:35
  • 00089 5.4 Directed Acyclic Graph of a Line Equation.mp4
    15:44
  • 00090 5.5 Fitting a Line with Machine Learning.mp4
    25:00
  • 00091 Topics.mp4
    00:33
  • 00092 6.1 Derivatives of Multivariate Functions.mp4
    19:20
  • 00093 6.2 Partial Derivative Exercises.mp4
    09:14
  • 00094 6.3 Geometrical Examples.mp4
    09:23
  • 00095 6.4 Geometrical Exercises.mp4
    06:18
  • 00096 6.5 Notation.mp4
    01:38
  • 00097 6.6 Chain Rule.mp4
    06:25
  • 00098 6.7 Chain Rule Exercises.mp4
    04:25
  • 00099 Topics.mp4
    00:47
  • 00100 7.1 Single-Point Regression.mp4
    12:15
  • 00101 7.2 Partial Derivatives of Quadratic Cost.mp4
    11:00
  • 00102 7.3 Descending the Gradient of Cost.mp4
    06:24
  • 00103 7.4 Gradient of Mean Squared Error.mp4
    20:58
  • 00104 7.5 Backpropagation.mp4
    03:39
  • 00105 7.6 Higher-Order Partial Derivatives.mp4
    08:37
  • 00106 7.7 Exercise.mp4
    02:36
  • 00107 Topics.mp4
    01:00
  • 00108 8.1 Binary Classification.mp4
    06:19
  • 00109 8.2 The Confusion Matrix and ROC Curve.mp4
    12:34
  • 00110 8.3 Indefinite Integrals.mp4
    11:05
  • 00111 8.4 Definite Integrals.mp4
    06:23
  • 00112 8.5 Numeric Integration with Python.mp4
    03:33
  • 00113 8.6 Exercises.mp4
    05:41
  • 00114 8.7 Finding the Area Under the ROC Curve.mp4
    02:13
  • 00115 8.8 Resources for Further Study of Calculus.mp4
    02:14
  • 00116 Calculus for Machine Learning - Summary.mp4
    01:02
  • 00117 Introduction.mp4
    03:21
  • 00118 Topics.mp4
    00:37
  • 00119 1.1 Orientation to the Machine Learning Foundations Series.mp4
    02:48
  • 00120 1.2 What Probability Theory Is.mp4
    07:04
  • 00121 1.3 Events and Sample Spaces.mp4
    04:56
  • 00122 1.4 Multiple Observations.mp4
    05:58
  • 00123 1.5 Factorials and Combinatorics.mp4
    04:49
  • 00124 1.6 Exercises.mp4
    08:52
  • 00125 1.7 The Law of Large Numbers and the Gambler s Fallacy.mp4
    11:17
  • 00126 1.8 Probability Distributions in Statistics.mp4
    05:23
  • 00127 1.9 Bayesian versus Frequentist Statistics.mp4
    08:43
  • 00128 1.10 Applications of Probability to Machine Learning.mp4
    08:47
  • 00129 Topics.mp4
    00:35
  • 00130 2.1 Discrete and Continuous Variables.mp4
    04:51
  • 00131 2.2 Probability Mass Functions.mp4
    05:56
  • 00132 2.3 Probability Density Functions.mp4
    04:09
  • 00133 2.4 Exercises on Probability Functions.mp4
    02:30
  • 00134 2.5 Expected Value.mp4
    06:21
  • 00135 2.6 Exercises on Expected Value.mp4
    04:26
  • 00136 Topics.mp4
    00:22
  • 00137 3.1 The Mean a Measure of Central Tendency.mp4
    07:19
  • 00138 3.2 Medians.mp4
    02:56
  • 00139 3.3 Modes.mp4
    06:22
  • 00140 3.4 Quantiles - Percentiles Quartiles and Deciles.mp4
    07:44
  • 00141 3.5 Box-and-Whisker Plots.mp4
    11:56
  • 00142 3.6 Variance a Measure of Dispersion.mp4
    07:45
  • 00143 3.7 Standard Deviation.mp4
    03:21
  • 00144 3.8 Standard Error.mp4
    04:53
  • 00145 3.9 Covariance a Measure of Relatedness.mp4
    12:43
  • 00146 3.10. Correlation.mp4
    07:45
  • 00147 Topics.mp4
    00:21
  • 00148 4.1 Joint Probability Distribution.mp4
    03:56
  • 00149 4.2 Marginal Probability.mp4
    05:11
  • 00150 4.3 Conditional Probability.mp4
    06:14
  • 00151 4.4 Exercises.mp4
    05:38
  • 00152 4.5 Chain Rule of Probabilities.mp4
    03:35
  • 00153 4.6 Independent Random Variables.mp4
    03:24
  • 00154 4.7 Conditional Independence.mp4
    05:01
  • 00155 Topics.mp4
    00:42
  • 00156 5.1 Uniform.mp4
    04:14
  • 00157 5.2 Gaussian - Normal and Standard Normal.mp4
    08:41
  • 00158 5.3 The Central Limit Theorem.mp4
    15:28
  • 00159 5.4 Log-Normal.mp4
    02:29
  • 00160 5.5 Exponential and Laplace.mp4
    04:45
  • 00161 5.6 Binomial and Multinomial.mp4
    08:06
  • 00162 5.7 Poisson.mp4
    03:36
  • 00163 5.8 Mixture Distributions.mp4
    03:29
  • 00164 5.9 Preprocessing Data for Model Input.mp4
    03:21
  • 00165 5.10 Exercises.mp4
    02:48
  • 00166 Topics.mp4
    00:28
  • 00167 6.1 What Information Theory Is.mp4
    01:11
  • 00168 6.2 Self-Information Nats and Bits.mp4
    06:20
  • 00169 6.3 Shannon and Differential Entropy.mp4
    07:10
  • 00170 6.4 Kullback-Leibler Divergence and Cross-Entropy.mp4
    05:29
  • 00171 Topics.mp4
    00:35
  • 00172 7.1 Applications of Statistics to Machine Learning.mp4
    09:23
  • 00173 7.2 Review of Essential Probability Theory.mp4
    12:08
  • 00174 7.3 z-scores and Outliers.mp4
    10:06
  • 00175 7.4 Exercises on z-scores.mp4
    03:58
  • 00176 7.5 p-values.mp4
    13:32
  • 00177 7.6 Exercises on p-values.mp4
    06:38
  • 00178 Topics.mp4
    00:35
  • 00179 8.1 Single-Sample t-tests and Degrees of Freedom.mp4
    10:36
  • 00180 8.2 Independent t-tests.mp4
    12:57
  • 00181 8.3 Paired t-tests.mp4
    13:30
  • 00182 8.4 Applications to Machine Learning.mp4
    04:13
  • 00183 8.5 Exercises.mp4
    07:55
  • 00184 8.6 Confidence Intervals.mp4
    10:27
  • 00185 8.7 ANOVA - Analysis of Variance.mp4
    03:09
  • 00186 Topics.mp4
    00:31
  • 00187 9.1 The Pearson Correlation Coefficient.mp4
    06:58
  • 00188 9.2 R-squared Coefficient of Determination.mp4
    02:55
  • 00189 9.4 Correcting for Multiple Comparisons.mp4
    03:36
  • 00190 Topics.mp4
    00:45
  • 00191 10.1 Independent versus Dependent Variables.mp4
    05:23
  • 00192 10.2 Linear Regression to Predict Continuous Values.mp4
    07:16
  • 00193 10.3 Fitting a Line to Points on a Cartesian Plane.mp4
    15:45
  • 00194 10.4 Linear Least Squares Exercise.mp4
    05:09
  • 00195 10.5 Ordinary Least Squares.mp4
    13:09
  • 00196 10.6 Categorical Dummy Features.mp4
    17:45
  • 00197 10.7 Logistic Regression to Predict Categories.mp4
    13:23
  • 00198 10.8 Open-Ended Exercises.mp4
    03:58
  • 00199 Topics.mp4
    00:36
  • 00200 11.1 Machine Learning versus Frequentist Statistics.mp4
    07:03
  • 00201 11.2 When to Use Bayesian Statistics.mp4
    02:24
  • 00202 11.3 Prior Probabilities.mp4
    05:28
  • 00203 11.4 Bayes Theorem.mp4
    12:46
  • 00204 11.5 Resources for Further Study of Probability and Statistics.mp4
    02:03
  • 00205 Probability and Statistics for Machine Learning - Summary.mp4
    01:03
  • 00206 Introduction.mp4
    02:55
  • 00207 Topics.mp4
    00:27
  • 00208 1.1 Orientation to the Machine Learning Foundations Series.mp4
    03:06
  • 00209 1.2 A Brief History of Data.mp4
    06:51
  • 00210 1.3 A Brief History of Algorithms.mp4
    05:04
  • 00211 1.4 Applications to Machine Learning.mp4
    03:18
  • 00212 Topics.mp4
    00:35
  • 00213 2.1 Introduction.mp4
    08:14
  • 00214 2.2 Constant Time.mp4
    09:26
  • 00215 2.3 Linear Time.mp4
    07:57
  • 00216 2.4 Polynomial Time.mp4
    05:26
  • 00217 2.5 Common Runtimes.mp4
    06:47
  • 00218 2.6 Best versus Worst Case.mp4
    09:23
  • 00219 Topics.mp4
    00:19
  • 00220 3.1 Lists.mp4
    03:28
  • 00221 3.2 Arrays.mp4
    08:55
  • 00222 3.3 Linked Lists.mp4
    03:03
  • 00223 3.4 Doubly-Linked Lists.mp4
    01:24
  • 00224 3.5 Stacks.mp4
    04:16
  • 00225 3.6 Queues.mp4
    01:48
  • 00226 3.7 Deques.mp4
    05:19
  • 00227 Topics.mp4
    00:24
  • 00228 4.1 Binary Search.mp4
    17:40
  • 00229 4.2 Bubble Sort.mp4
    09:20
  • 00230 4.3 Merge Sort.mp4
    16:14
  • 00231 4.4 Quick Sort.mp4
    15:05
  • 00232 Topics.mp4
    00:30
  • 00233 5.1 Maps and Dictionaries.mp4
    04:32
  • 00234 5.2 Sets.mp4
    03:57
  • 00235 5.3 Hash Functions.mp4
    06:50
  • 00236 5.4 Collisions.mp4
    05:13
  • 00237 5.5 Load Factor.mp4
    02:17
  • 00238 5.6 Hash Maps.mp4
    02:50
  • 00239 5.7 String Keys.mp4
    03:17
  • 00240 5.8 Hashing in ML.mp4
    02:13
  • 00241 Topics.mp4
    00:22
  • 00242 6.1 Introduction.mp4
    03:37
  • 00243 6.2 Decision Trees.mp4
    15:58
  • 00244 6.3 Random Forests.mp4
    08:05
  • 00245 6.4 XGBoost - Gradient-Boosted Trees.mp4
    09:57
  • 00246 6.5 Additional Concepts.mp4
    02:49
  • 00247 Topics.mp4
    00:28
  • 00248 7.1 Introduction.mp4
    02:58
  • 00249 7.2 Directed versus Undirected Graphs.mp4
    01:43
  • 00250 7.3 DAGs - Directed Acyclic Graphs.mp4
    10:33
  • 00251 7.4 Additional Concepts.mp4
    01:26
  • 00252 7.5 Bonus - Pandas DataFrames.mp4
    01:50
  • 00253 7.6 Resources for Further Study of DSA.mp4
    01:41
  • 00254 Topics.mp4
    00:43
  • 00255 8.1 Statistics versus Machine Learning.mp4
    12:28
  • 00256 8.2 Objective Functions.mp4
    07:56
  • 00257 8.3 Mean Absolute Error.mp4
    02:08
  • 00258 8.4 Mean Squared Error.mp4
    08:01
  • 00259 8.5 Minimizing Cost with Gradient Descent.mp4
    06:59
  • 00260 8.6 Gradient Descent from Scratch with PyTorch.mp4
    25:58
  • 00261 8.7 Critical Points.mp4
    08:46
  • 00262 8.8 Stochastic Gradient Descent.mp4
    16:44
  • 00263 8.9 Learning Rate Scheduling.mp4
    12:47
  • 00264 8.10 Maximizing Reward with Gradient Ascent.mp4
    02:55
  • 00265 Topics.mp4
    00:36
  • 00266 9.1 Jacobian Matrices.mp4
    07:06
  • 00267 9.2 Second-Order Optimization and Hessians.mp4
    05:26
  • 00268 9.3 Momentum.mp4
    02:38
  • 00269 9.4 Adaptive Optimizers.mp4
    07:19
  • 00270 9.5 Congratulations and Next Steps.mp4
    08:26
  • 00271 Data Structures Algorithms and Machine Learning Optimization - Summary.mp4
    00:52
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Pearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
    • language english
    • Training sessions 272
    • duration 28:06:56
    • Release Date 2023/11/03