Pearson The Essential Machine Learning Foundations Math Probability Statistics And Computer Science
Focused View
28:06:56
122 View
00000 Introduction.mp4
02:54
00001 Topics.mp4
00:33
00002 1.1 Defining Linear Algebra.mp4
06:35
00003 1.2 Solving a System of Equations Algebraically.mp4
06:42
00004 1.3 Linear Algebra in Machine Learning and Deep Learning.mp4
10:51
00005 1.4 Historical and Contemporary Applications.mp4
07:36
00006 1.5 Exercise.mp4
08:49
00007 Topics.mp4
00:37
00008 2.1 Tensors.mp4
04:35
00009 2.2 Scalars.mp4
23:03
00010 2.3 Vectors and Vector Transposition.mp4
11:15
00011 2.4 Norms and Unit Vectors.mp4
15:35
00012 2.5 Basis Orthogonal and Orthonormal Vectors.mp4
04:47
00013 2.6 Matrices.mp4
07:39
00014 2.7 Generic Tensor Notation.mp4
04:46
00015 2.8 Exercises.mp4
02:11
00016 Topics.mp4
00:21
00017 3.1 Tensor Transposition.mp4
03:37
00018 3.2 Basic Tensor Arithmetic.mp4
05:56
00019 3.3 Reduction.mp4
04:39
00020 3.4 The Dot Product.mp4
06:04
00021 3.5 Exercises.mp4
05:38
00022 Topics.mp4
00:24
00023 4.1 The Substitution Strategy.mp4
03:40
00024 4.2 Substitution Exercises.mp4
08:41
00025 4.3 The Elimination Strategy.mp4
04:10
00026 4.4 Elimination Exercises.mp4
09:49
00027 Topics.mp4
00:40
00028 5.1 Matrix-by-Vector Multiplication.mp4
12:01
00029 5.2 Matrix-by-Matrix Multiplication.mp4
09:44
00030 5.3 Symmetric and Identity Matrices.mp4
05:13
00031 5.4 Exercises.mp4
08:31
00032 5.5 Machine Learning and Deep Learning Applications.mp4
11:45
00033 Topics.mp4
00:24
00034 6.1 The Frobenius Norm.mp4
03:39
00035 6.2 Matrix Inversion.mp4
16:15
00036 6.3 Diagonal Matrices.mp4
03:41
00037 6.4 Orthogonal Matrices.mp4
04:23
00038 6.5 The Trace Operator.mp4
03:45
00039 Topics.mp4
00:26
00040 7.1 The Eigenconcept.mp4
09:00
00041 7.2 Exercises.mp4
09:29
00042 7.3 Eigenvectors in Python.mp4
28:00
00043 7.4 High-Dimensional Eigenvectors.mp4
03:54
00044 Topics.mp4
00:38
00045 8.1 The Determinant of a 2 x 2 Matrix.mp4
06:02
00046 8.2 The Determinants of Larger Matrices.mp4
07:18
00047 8.3 Exercises.mp4
03:59
00048 8.4 Determinants and Eigenvalues.mp4
08:43
00049 8.5 Eigendecomposition.mp4
14:01
00050 Topics.mp4
00:43
00051 9.1 Singular Value Decomposition.mp4
08:09
00052 9.2 Media File Compression.mp4
06:57
00053 9.3 The Moore-Penrose Pseudoinverse.mp4
08:44
00054 9.4 Regression via Pseudoinversion.mp4
12:47
00055 9.5 Principal Component Analysis.mp4
06:57
00056 9.6 Resources for Further Study of Linear Algebra.mp4
03:16
00057 Linear Algebra for Machine Learning Machine Learning Foundations - Summary.mp4
01:11
00058 Introduction.mp4
02:46
00059 Topics.mp4
00:31
00060 1.1 Differential versus Integral Calculus.mp4
16:42
00061 1.2 A Brief History.mp4
07:22
00062 1.3 Calculus of the Infinitesimals.mp4
13:04
00063 1.4 Modern Applications.mp4
10:17
00064 Topics.mp4
00:35
00065 2.1 Continuous versus Discontinuous Functions.mp4
09:20
00066 2.2 Solving via Factoring.mp4
01:37
00067 2.3 Solving via Approaching.mp4
03:17
00068 2.4 Approaching Infinity.mp4
04:59
00069 2.5 Exercises.mp4
06:02
00070 Topics.mp4
00:37
00071 3.1 Delta Method.mp4
11:13
00072 3.2 The Most Common Representation.mp4
10:28
00073 3.3 Derivative Notation.mp4
04:12
00074 3.4 Constants.mp4
01:37
00075 3.5 Power Rule.mp4
01:33
00076 3.6 Constant Product Rule.mp4
03:17
00077 3.7 Sum Rule.mp4
02:08
00078 3.8 Exercises.mp4
08:54
00079 Topics.mp4
00:28
00080 4.1 Product Rule.mp4
03:33
00081 4.2 Quotient Rule.mp4
03:43
00082 4.3 Chain Rule.mp4
05:22
00083 4.4 Exercises.mp4
09:07
00084 4.5 Power Rule on a Function Chain.mp4
03:28
00085 Topics.mp4
00:31
00086 5.1 Introduction.mp4
03:41
00087 5.2 Autodiff with PyTorch.mp4
04:33
00088 5.3 Autodiff with TensorFlow.mp4
02:35
00089 5.4 Directed Acyclic Graph of a Line Equation.mp4
15:44
00090 5.5 Fitting a Line with Machine Learning.mp4
25:00
00091 Topics.mp4
00:33
00092 6.1 Derivatives of Multivariate Functions.mp4
19:20
00093 6.2 Partial Derivative Exercises.mp4
09:14
00094 6.3 Geometrical Examples.mp4
09:23
00095 6.4 Geometrical Exercises.mp4
06:18
00096 6.5 Notation.mp4
01:38
00097 6.6 Chain Rule.mp4
06:25
00098 6.7 Chain Rule Exercises.mp4
04:25
00099 Topics.mp4
00:47
00100 7.1 Single-Point Regression.mp4
12:15
00101 7.2 Partial Derivatives of Quadratic Cost.mp4
11:00
00102 7.3 Descending the Gradient of Cost.mp4
06:24
00103 7.4 Gradient of Mean Squared Error.mp4
20:58
00104 7.5 Backpropagation.mp4
03:39
00105 7.6 Higher-Order Partial Derivatives.mp4
08:37
00106 7.7 Exercise.mp4
02:36
00107 Topics.mp4
01:00
00108 8.1 Binary Classification.mp4
06:19
00109 8.2 The Confusion Matrix and ROC Curve.mp4
12:34
00110 8.3 Indefinite Integrals.mp4
11:05
00111 8.4 Definite Integrals.mp4
06:23
00112 8.5 Numeric Integration with Python.mp4
03:33
00113 8.6 Exercises.mp4
05:41
00114 8.7 Finding the Area Under the ROC Curve.mp4
02:13
00115 8.8 Resources for Further Study of Calculus.mp4
02:14
00116 Calculus for Machine Learning - Summary.mp4
01:02
00117 Introduction.mp4
03:21
00118 Topics.mp4
00:37
00119 1.1 Orientation to the Machine Learning Foundations Series.mp4
02:48
00120 1.2 What Probability Theory Is.mp4
07:04
00121 1.3 Events and Sample Spaces.mp4
04:56
00122 1.4 Multiple Observations.mp4
05:58
00123 1.5 Factorials and Combinatorics.mp4
04:49
00124 1.6 Exercises.mp4
08:52
00125 1.7 The Law of Large Numbers and the Gambler s Fallacy.mp4
11:17
00126 1.8 Probability Distributions in Statistics.mp4
05:23
00127 1.9 Bayesian versus Frequentist Statistics.mp4
08:43
00128 1.10 Applications of Probability to Machine Learning.mp4
08:47
00129 Topics.mp4
00:35
00130 2.1 Discrete and Continuous Variables.mp4
04:51
00131 2.2 Probability Mass Functions.mp4
05:56
00132 2.3 Probability Density Functions.mp4
04:09
00133 2.4 Exercises on Probability Functions.mp4
02:30
00134 2.5 Expected Value.mp4
06:21
00135 2.6 Exercises on Expected Value.mp4
04:26
00136 Topics.mp4
00:22
00137 3.1 The Mean a Measure of Central Tendency.mp4
07:19
00138 3.2 Medians.mp4
02:56
00139 3.3 Modes.mp4
06:22
00140 3.4 Quantiles - Percentiles Quartiles and Deciles.mp4
07:44
00141 3.5 Box-and-Whisker Plots.mp4
11:56
00142 3.6 Variance a Measure of Dispersion.mp4
07:45
00143 3.7 Standard Deviation.mp4
03:21
00144 3.8 Standard Error.mp4
04:53
00145 3.9 Covariance a Measure of Relatedness.mp4
12:43
00146 3.10. Correlation.mp4
07:45
00147 Topics.mp4
00:21
00148 4.1 Joint Probability Distribution.mp4
03:56
00149 4.2 Marginal Probability.mp4
05:11
00150 4.3 Conditional Probability.mp4
06:14
00151 4.4 Exercises.mp4
05:38
00152 4.5 Chain Rule of Probabilities.mp4
03:35
00153 4.6 Independent Random Variables.mp4
03:24
00154 4.7 Conditional Independence.mp4
05:01
00155 Topics.mp4
00:42
00156 5.1 Uniform.mp4
04:14
00157 5.2 Gaussian - Normal and Standard Normal.mp4
08:41
00158 5.3 The Central Limit Theorem.mp4
15:28
00159 5.4 Log-Normal.mp4
02:29
00160 5.5 Exponential and Laplace.mp4
04:45
00161 5.6 Binomial and Multinomial.mp4
08:06
00162 5.7 Poisson.mp4
03:36
00163 5.8 Mixture Distributions.mp4
03:29
00164 5.9 Preprocessing Data for Model Input.mp4
03:21
00165 5.10 Exercises.mp4
02:48
00166 Topics.mp4
00:28
00167 6.1 What Information Theory Is.mp4
01:11
00168 6.2 Self-Information Nats and Bits.mp4
06:20
00169 6.3 Shannon and Differential Entropy.mp4
07:10
00170 6.4 Kullback-Leibler Divergence and Cross-Entropy.mp4
05:29
00171 Topics.mp4
00:35
00172 7.1 Applications of Statistics to Machine Learning.mp4
09:23
00173 7.2 Review of Essential Probability Theory.mp4
12:08
00174 7.3 z-scores and Outliers.mp4
10:06
00175 7.4 Exercises on z-scores.mp4
03:58
00176 7.5 p-values.mp4
13:32
00177 7.6 Exercises on p-values.mp4
06:38
00178 Topics.mp4
00:35
00179 8.1 Single-Sample t-tests and Degrees of Freedom.mp4
10:36
00180 8.2 Independent t-tests.mp4
12:57
00181 8.3 Paired t-tests.mp4
13:30
00182 8.4 Applications to Machine Learning.mp4
04:13
00183 8.5 Exercises.mp4
07:55
00184 8.6 Confidence Intervals.mp4
10:27
00185 8.7 ANOVA - Analysis of Variance.mp4
03:09
00186 Topics.mp4
00:31
00187 9.1 The Pearson Correlation Coefficient.mp4
06:58
00188 9.2 R-squared Coefficient of Determination.mp4
02:55
00189 9.4 Correcting for Multiple Comparisons.mp4
03:36
00190 Topics.mp4
00:45
00191 10.1 Independent versus Dependent Variables.mp4
05:23
00192 10.2 Linear Regression to Predict Continuous Values.mp4
07:16
00193 10.3 Fitting a Line to Points on a Cartesian Plane.mp4
15:45
00194 10.4 Linear Least Squares Exercise.mp4
05:09
00195 10.5 Ordinary Least Squares.mp4
13:09
00196 10.6 Categorical Dummy Features.mp4
17:45
00197 10.7 Logistic Regression to Predict Categories.mp4
13:23
00198 10.8 Open-Ended Exercises.mp4
03:58
00199 Topics.mp4
00:36
00200 11.1 Machine Learning versus Frequentist Statistics.mp4
07:03
00201 11.2 When to Use Bayesian Statistics.mp4
02:24
00202 11.3 Prior Probabilities.mp4
05:28
00203 11.4 Bayes Theorem.mp4
12:46
00204 11.5 Resources for Further Study of Probability and Statistics.mp4
02:03
00205 Probability and Statistics for Machine Learning - Summary.mp4
01:03
00206 Introduction.mp4
02:55
00207 Topics.mp4
00:27
00208 1.1 Orientation to the Machine Learning Foundations Series.mp4
03:06
00209 1.2 A Brief History of Data.mp4
06:51
00210 1.3 A Brief History of Algorithms.mp4
05:04
00211 1.4 Applications to Machine Learning.mp4
03:18
00212 Topics.mp4
00:35
00213 2.1 Introduction.mp4
08:14
00214 2.2 Constant Time.mp4
09:26
00215 2.3 Linear Time.mp4
07:57
00216 2.4 Polynomial Time.mp4
05:26
00217 2.5 Common Runtimes.mp4
06:47
00218 2.6 Best versus Worst Case.mp4
09:23
00219 Topics.mp4
00:19
00220 3.1 Lists.mp4
03:28
00221 3.2 Arrays.mp4
08:55
00222 3.3 Linked Lists.mp4
03:03
00223 3.4 Doubly-Linked Lists.mp4
01:24
00224 3.5 Stacks.mp4
04:16
00225 3.6 Queues.mp4
01:48
00226 3.7 Deques.mp4
05:19
00227 Topics.mp4
00:24
00228 4.1 Binary Search.mp4
17:40
00229 4.2 Bubble Sort.mp4
09:20
00230 4.3 Merge Sort.mp4
16:14
00231 4.4 Quick Sort.mp4
15:05
00232 Topics.mp4
00:30
00233 5.1 Maps and Dictionaries.mp4
04:32
00234 5.2 Sets.mp4
03:57
00235 5.3 Hash Functions.mp4
06:50
00236 5.4 Collisions.mp4
05:13
00237 5.5 Load Factor.mp4
02:17
00238 5.6 Hash Maps.mp4
02:50
00239 5.7 String Keys.mp4
03:17
00240 5.8 Hashing in ML.mp4
02:13
00241 Topics.mp4
00:22
00242 6.1 Introduction.mp4
03:37
00243 6.2 Decision Trees.mp4
15:58
00244 6.3 Random Forests.mp4
08:05
00245 6.4 XGBoost - Gradient-Boosted Trees.mp4
09:57
00246 6.5 Additional Concepts.mp4
02:49
00247 Topics.mp4
00:28
00248 7.1 Introduction.mp4
02:58
00249 7.2 Directed versus Undirected Graphs.mp4
01:43
00250 7.3 DAGs - Directed Acyclic Graphs.mp4
10:33
00251 7.4 Additional Concepts.mp4
01:26
00252 7.5 Bonus - Pandas DataFrames.mp4
01:50
00253 7.6 Resources for Further Study of DSA.mp4
01:41
00254 Topics.mp4
00:43
00255 8.1 Statistics versus Machine Learning.mp4
12:28
00256 8.2 Objective Functions.mp4
07:56
00257 8.3 Mean Absolute Error.mp4
02:08
00258 8.4 Mean Squared Error.mp4
08:01
00259 8.5 Minimizing Cost with Gradient Descent.mp4
06:59
00260 8.6 Gradient Descent from Scratch with PyTorch.mp4
25:58
00261 8.7 Critical Points.mp4
08:46
00262 8.8 Stochastic Gradient Descent.mp4
16:44
00263 8.9 Learning Rate Scheduling.mp4
12:47
00264 8.10 Maximizing Reward with Gradient Ascent.mp4
02:55
00265 Topics.mp4
00:36
00266 9.1 Jacobian Matrices.mp4
07:06
00267 9.2 Second-Order Optimization and Hessians.mp4
05:26
00268 9.3 Momentum.mp4
02:38
00269 9.4 Adaptive Optimizers.mp4
07:19
00270 9.5 Congratulations and Next Steps.mp4
08:26
00271 Data Structures Algorithms and Machine Learning Optimization - Summary.mp4
00:52
More details
User Reviews
Rating
average 0
Focused display
Category

LiveLessons
View courses LiveLessonsPearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
- language english
- Training sessions 272
- duration 28:06:56
- Release Date 2023/11/03