Companies Home Search Profile

NumPy, Pandas and Matplotlib A-Z™ for Machine Learning 2024

Focused View

Donatus Obomighie | PhD, MSc, PMP

11:31:44

24 View
  • 1. Course Syllabus Walkthrough.mp4
    04:16
  • 2. Installing Jupiter Notebook.mp4
    01:50
  • 3. Installing of NumPy.mp4
    00:29
  • 4. Importing NumPy.mp4
    00:29
  • 1. What is NumPy.mp4
    01:33
  • 2. What is Arrray.mp4
    02:11
  • 3. Types of Array.mp4
    00:53
  • 4. What is Dimension.mp4
    04:24
  • 5. Exploring - Row Before Column - Why.mp4
    09:13
  • 6. Identifying an Array.mp4
    07:21
  • 7. Scalar vs Vector vs Matrix vs Tensor.mp4
    06:07
  • 1. First Time Creating an Array.mp4
    01:31
  • 2. Creating an Array from a Tuple.mp4
    00:55
  • 3. Creating a Zero Dimensional Array.mp4
    03:30
  • 4. Avoiding Errors of Multiple Arguments.mp4
    02:53
  • 5. Creating a 1-D Array.mp4
    00:41
  • 6. Creating a 2-D Array.mp4
    01:04
  • 7. Creating a 3-D Array.mp4
    02:58
  • 1. Understanding NumPy Data Type.mp4
    09:15
  • 2. Forcing a Data Type of an Array.mp4
    04:47
  • 1. The Challenges.mp4
    01:06
  • 2. The Challenges - text.html
  • 3. Solution to Challenge 1a.mp4
    00:40
  • 4. Solution to Challenge 1b.mp4
    01:14
  • 5. Solution to Challenge 1c.mp4
    02:09
  • 6. Solution to Challenge 1d.mp4
    02:02
  • 7. Solution to Challenge 1e.mp4
    01:24
  • 8. Solution to Challenge 2a.mp4
    00:25
  • 9. Solution to Challenge 2b.mp4
    00:30
  • 10. Solution to Challenge 2c.mp4
    03:01
  • 11. Solution to Challenge 2d.mp4
    00:53
  • 12. Solution to Challenge 2e.mp4
    00:47
  • 13. Solution to Challenge 2f.mp4
    01:08
  • 1. Array of Zeros.mp4
    02:55
  • 2. Arrays of Ones.mp4
    00:56
  • 3. Empty Arrays.mp4
    00:57
  • 4. How to use arange().mp4
    02:47
  • 5. How to use linspace().mp4
    03:13
  • 6. How to use reshape().mp4
    01:55
  • 1. How to find the attributes of an Array - (ndim, shape, size, dtype, itemsize).mp4
    05:46
  • 1. The Challenges.mp4
    00:21
  • 2. The Challenges - Text.html
  • 3. Solution to Challenge 1a.mp4
    02:56
  • 4. Solution to Challenge 1b.mp4
    00:58
  • 5. Solution to Challenge 1c.mp4
    01:19
  • 6. Solution to Challenge 2a.mp4
    01:09
  • 7. Solution to Challenge 2b.mp4
    01:09
  • 8. Solution to Challenge 2c.mp4
    00:51
  • 9. Solution to Challenge 2d.mp4
    00:31
  • 10. Solution to Challenge 2e.mp4
    00:54
  • 11. Solution to Challenge 2f.mp4
    00:45
  • 12. Solution to Challenge #3.mp4
    01:11
  • 13. Solution to Challenge #4.mp4
    04:03
  • 1. Array Sorting.mp4
    00:46
  • 2. Array Concatenation.mp4
    03:33
  • 1. Understanding how indexing and Slicing work on 1-D Arrays.mp4
    12:34
  • 1. The Challenges.mp4
    00:21
  • 2. The Challenges - Text.html
  • 3. Solution to Challenge 1a.mp4
    00:59
  • 4. Solution to Challenge 1b.mp4
    00:29
  • 5. Solution to Challenge 1c.mp4
    00:42
  • 6. Solution to Challenge 1d.mp4
    01:07
  • 7. Solution to Challenge 1e.mp4
    00:38
  • 8. Solution to Challenge 1f.mp4
    00:51
  • 9. Solution to Challenge 1g.mp4
    01:14
  • 10. Solution to Challenge 1h.mp4
    01:20
  • 11. Solution to Challenge 1i.mp4
    00:29
  • 12. Solution to Challenge 1j.mp4
    01:12
  • 13. Solution to Challenge 1k.mp4
    00:23
  • 14. Solution to Challenge 1l.mp4
    00:32
  • 15. Solution to Challenge 1m.mp4
    00:17
  • 1. With Less Than, Greater Than or Equal To.mp4
    00:30
  • 2. Even and Odd Numbers.mp4
    01:03
  • 3. Two Conditions.mp4
    02:57
  • 1. The Challenges.mp4
    00:33
  • 2. The Challenges - Text.html
  • 3. Solution to Challenge #1.mp4
    00:28
  • 4. Solution to Challenge #2.mp4
    00:28
  • 5. Solution to Challenge #3.mp4
    00:31
  • 6. Solution to Challenge #4.mp4
    00:36
  • 7. Solution to Challenge #5.mp4
    01:48
  • 1. Selecting Elements of 2-D Array.mp4
    01:13
  • 2. Slicing In 2-D Array.mp4
    04:17
  • 1. The Challenges.mp4
    00:15
  • 2. The Challenges - Text.html
  • 3. Solution to Challenge #1.mp4
    00:30
  • 4. Solution to Challenge #2.mp4
    00:09
  • 5. Solution to Challenge #3.mp4
    00:59
  • 6. Solution to Challenge #4.mp4
    00:48
  • 7. Solution to Challenge #5.html
  • 8. Solution to Challenge #6.mp4
    00:20
  • 9. Solution to Challenge #7.mp4
    01:10
  • 1. Selecting Elements of 3-D Array.mp4
    02:34
  • 2. Slicing a 3-D Array.mp4
    02:49
  • 3. More on Slicing.mp4
    07:01
  • 1. The Challenges.mp4
    00:27
  • 2. The Challenges - Text.html
  • 3. Solution to Challenge #1.mp4
    01:00
  • 4. Solution to Challenge #2.mp4
    00:28
  • 5. Solution to Challenge #3.mp4
    00:58
  • 6. Solution to Challenge #4.mp4
    01:45
  • 7. Solution to Challenge #5.mp4
    01:36
  • 8. Solution to Challenge #6.mp4
    00:51
  • 9. Solution to Challenge #7.mp4
    03:02
  • 10. Solution to Challenge #8.mp4
    00:54
  • 11. Solution to Challenge #9.mp4
    00:44
  • 12. Solution to Challenge #10.mp4
    02:08
  • 13. Solution to Challenge #11.mp4
    02:51
  • 14. Solution to Challenge #12.mp4
    00:54
  • 15. Solution to Challenge #13.mp4
    00:35
  • 16. Solution to Challenge #14.mp4
    01:08
  • 17. Solution to Challenge #15.mp4
    00:56
  • 18. Solution to Challenge #16.mp4
    01:39
  • 19. Solution to Challenge #17.mp4
    00:42
  • 1. Summary on Selecting Element From any Dimensional Array.mp4
    04:51
  • 1. Understanding Array Flatten and Ravel.mp4
    03:55
  • 1. Understanding Array Transpose.mp4
    01:17
  • 1. Understanding How to Reverse an Array.mp4
    01:53
  • 2. Understanding How to Reverse Along an Axis.mp4
    02:02
  • 1. Creating a Unique Array.mp4
    00:42
  • 2. Indexing a Unique Array.mp4
    01:03
  • 1. Minimum, Maximum & Sum.mp4
    00:35
  • 2. Minimum, Maximum and Sum Along an Axis.mp4
    02:17
  • 1. Array Stacking.mp4
    01:28
  • 1. Splitting an Array.mp4
    04:04
  • 2. Splitting an Array on a Specific Column.mp4
    02:09
  • 1. Understand how to Copy an Array.mp4
    03:17
  • 2. Understand how to Copy an Array II.mp4
    02:41
  • 1. Understanding Array Operators.mp4
    02:38
  • 1. How to delete Array Element I.mp4
    02:36
  • 2. How to delete Array Element II.mp4
    01:59
  • 3. Challenge & Solution I.mp4
    00:58
  • 4. Challenge & Solution II.mp4
    00:39
  • 5. Challenge & Solution III.mp4
    00:39
  • 6. Challenge & Solution III - Code.html
  • 7. Challenge Yourself.html
  • 8. Solution - Challenge Yourself.html
  • 1. How to append & Insert an Element Into An Array.mp4
    03:15
  • 2. How to append & Insert Elements Into An Array.mp4
    01:04
  • 1. Understanding Newaxis.mp4
    05:05
  • 1. Understanding NumPy Trigonometric Function.mp4
    03:17
  • 2. Understanding NumPy Trigonometric Function.html
  • 1. Understanding How to Search an Array.mp4
    01:22
  • 1. Array Multiplication by a Single Number.mp4
    01:06
  • 2. Understanding dot().mp4
    02:38
  • 3. Challenge & Solution.mp4
    01:34
  • 1. Understanding Trace.mp4
    00:38
  • 2. Challenge & Solution.mp4
    00:35
  • 1. Understanding Outer Product.mp4
    02:04
  • 2. Challenge & Solution.mp4
    00:46
  • 1. Understanding Inner Product.mp4
    01:37
  • 1. Understanding Cross Product.mp4
    01:10
  • 2. Challenge & Solution - I.mp4
    01:17
  • 3. Challenge & Solution - II.mp4
    03:07
  • 1. Understanding Kronecker Product.mp4
    02:46
  • 1. Understanding Determinant.mp4
    02:55
  • 2. Challenge & Solution - 2 by 2.mp4
    00:49
  • 3. Challenge & Solution - 3 by 3.mp4
    02:21
  • 1. Understanding Inverse of Array.mp4
    03:34
  • 2. Challenge & Solution.mp4
    00:19
  • 1. Understanding the Condition Number.mp4
    02:05
  • 1. Random Number (Integer).mp4
    03:17
  • 2. Random Number (Float).mp4
    00:26
  • 3. Random Arrays.mp4
    03:22
  • 4. Random Choice.mp4
    00:52
  • 5. Choice with 2-D and 3-D Array.mp4
    01:23
  • 1. Understanding Random Seed.mp4
    04:48
  • 2. Random Seed With Choice().mp4
    02:56
  • 1. What is Data Distribution.mp4
    01:26
  • 2. What is Random Distribution.mp4
    06:24
  • 3. Random Distribution 2-D and 3-D Array.mp4
    00:58
  • 1. NumPy vs MatPlotLib vs Seaborn.mp4
    02:40
  • 2. Installation of MatPlotLib and Seaborn.mp4
    01:28
  • 3. Challenge & Solution 1.mp4
    04:05
  • 4. Challenge & Solution II.mp4
    00:30
  • 1. What is Normal Distribution.mp4
    04:16
  • 2. Normal Distribution Visualisation.mp4
    02:05
  • 1. Binomial Distribution.mp4
    02:22
  • 2. Binomial Data Visualisation.mp4
    01:41
  • 1. Pandas Introduction.mp4
    01:57
  • 2. Pandas Installation & Import.mp4
    00:43
  • 3. Pandas DataFrame.mp4
    02:12
  • 1.1 world-happiness-report.csv
  • 1. Happiness Data Set.html
  • 2.1 Sales data.csv
  • 2. Sales Data Set.html
  • 3.1 northwind data set.zip
  • 3. Northwind Database.html
  • 4.1 cities.csv
  • 4. Cities Data Set.html
  • 1. Understanding Pandas Series.mp4
    01:07
  • 1. Understanding Pandas Label.mp4
    01:27
  • 2. Creating Series From Dictionary.mp4
    01:20
  • 1. Introduction to DataFrame in Pandas.mp4
    02:01
  • 2. Loc.mp4
    00:58
  • 3. Challenge & Solution.mp4
    00:49
  • 1. Pandas - Understanding Concat in Pandas.mp4
    03:56
  • 2. Pandas - Understanding Concat in Pandas - Code.html
  • 3. Pandas - Adding Hierarchy.mp4
    00:56
  • 4. Pandas - Adding Hierarchy - Code.html
  • 5. Pandas - Concat Label.mp4
    01:13
  • 6. Pandas - Concat Label - Code.html
  • 7. Pandas - Challenge & Solution.mp4
    01:05
  • 8. Pandas - Challenge & Solution - Code.html
  • 9. Pandas - Concat Columns of Different Sizes.mp4
    01:53
  • 10. Pandas - Concat Columns of Different Sizes - Code.html
  • 11. Pandas - Concat along axis.mp4
    02:23
  • 12. Pandas - Concat along axis - Code.html
  • 1. Pandas - Understanding Merge.mp4
    01:46
  • 2. Pandas - Understanding Merge - Code.html
  • 3. Pandas - Merging DataFrame of Different Sizes.mp4
    01:35
  • 4. Pandas - Merging DataFrame of Different Sizes - Code.html
  • 5. Pandas - Inner, Outer, Left and Right Join.mp4
    05:08
  • 6. Pandas - Inner, Outer, Left and Right Join - Code.html
  • 7. Pandas - Merge Suffix.mp4
    02:38
  • 8. Pandas - Merge Suffix - Code.html
  • 1. Load CSV in Pandas.mp4
    02:37
  • 1. Pandas - Minimum and Maximum.mp4
    00:40
  • 2. Pandas - Minimum and Maximum - Singapore.mp4
    01:26
  • 3. Pandas - Mean, Median & Mode.mp4
    00:51
  • 4. Pandas - Mean, Median & Mode - Mexico.mp4
    01:07
  • 5. Pandas - Sum.mp4
    01:08
  • 6. Challenge & Solution.mp4
    01:24
  • 7. Pandas - Statistical Summary.mp4
    01:15
  • 8. Pandas - Count.mp4
    00:57
  • 1. Pandas - Load JSON.mp4
    02:21
  • 1. 1 - Pandas Challenge & Solution - Import.mp4
    01:54
  • 2. 2 - Pandas Challenge & Solution - Data Set Inspection - Shape, DataType & Column.mp4
    01:27
  • 3. 3 - Challenge & Solution - Skip Rows Reading CSV File.mp4
    01:25
  • 4. 3 - Challenge & Solution - Skip Rows Reading CSV File - Code.html
  • 5. 4 - Challenge & Solution - Skip Rows Keep Headers.mp4
    02:58
  • 6. 4 - Challenge & Solution - Skip Rows Keep Headers - Code.html
  • 7. 5 - Challenge & Solution - Read CSV Without Header.mp4
    01:12
  • 8. 5 - Challenge & Solution - Read CSV Without Header - Code.html
  • 9. 6 - Challenge & Solution - Subset of Column.mp4
    02:36
  • 10. 6 - Challenge & Solution - Subset of Column - Code.html
  • 11. 7 - Challenge & Solution - Few Rows.mp4
    00:37
  • 12. 7 - Challenge & Solution - Few Rows - Code.html
  • 13. 8 - Challenge & Solution - Few Rows, Few Columns.mp4
    00:50
  • 14. 8 - Challenge & Solution - Few Rows, Few Columns - Code.html
  • 15. 9 - Challenge & Solution - Time to Import.mp4
    00:40
  • 16. 9 - Challenge & Solution - Time to Import- Code.html
  • 17. 10 - Challenge & Solution - Changing Data Type.mp4
    01:42
  • 18. 10 - Challenge & Solution - Changing Data Type - Code.html
  • 1. Pandas - Summary of Data Set.mp4
    01:35
  • 2. Pandas - Summary of Data Set - Code.html
  • 3. Pandas - Subset of Column.mp4
    01:53
  • 4. Pandas - Subset of Column - Code.html
  • 5. Pandas - Total number of Columns and Rows.mp4
    02:18
  • 6. Pandas - Total number of Columns and Rows - Code.html
  • 7. Pandas - Last Ten Rows.mp4
    00:52
  • 8. Pandas - Last Ten Rows - Code.html
  • 1. Pandas - Difference between Loc and iloc.mp4
    03:50
  • 2. Pandas - Difference between Loc and iloc - more.mp4
    07:52
  • 3. Pandas - Difference between head and tail.mp4
    01:30
  • 4. Pandas - Difference between head and tail - Code.html
  • 5. Pandas - Using Head, Loc & iLoc to Achieve the Same Result.mp4
    00:51
  • 6. Pandas - Using Head, Loc & iLoc to Achieve the Same Result - Code.html
  • 7. Pandas - Using tail, loc and iloc for last row.mp4
    02:43
  • 8. Pandas - Using tail, loc and iloc for last row - Code.html
  • 1. Pandas - iloc & loc.mp4
    05:10
  • 2. Pandas - iloc & loc - code.html
  • 3. Pandas - Without Using Tail or iLoc Get Last Row.mp4
    03:15
  • 4. Pandas - Without Using Tail or iLoc Get Last Row - Code.html
  • 5. Pandas - Using Range.mp4
    02:48
  • 6. Pandas - Using Range - Code.html
  • 7. Pandas - Another Selection Trick.mp4
    02:32
  • 8. Pandas - Another Selection Trick - Code.html
  • 1. Pandas - Even Columns.mp4
    03:00
  • 2. Pandas - Even Columns - Code.html
  • 3. Pandas - Even Columns Without Using Range.mp4
    04:30
  • 4. Pandas - Even Columns Without Using Range - Code.html
  • 5. Pandas - Specific Row.mp4
    02:05
  • 6. Pandas - Specific Row - Code.html
  • 7. Pandas - Column.mp4
    00:17
  • 8. Pandas - Column - Code.html
  • 9. Pandas - Filtering Greater Than.mp4
    01:12
  • 10. Pandas - Filtering Greater Than - Code.html
  • 11. Pandas - Filtering Greater Than with Fewer Rows.mp4
    01:02
  • 12. Pandas - Filtering Greater Than with Fewer Rows - Code.html
  • 1. Pandas - nlargest.mp4
    02:16
  • 2. Pandas - nlargest - Code.html
  • 3. Pandas - nsmallest.mp4
    01:22
  • 4. Pandas - nsmallest - Code.html
  • 5. Pandas - Sort Values Ascending.mp4
    01:52
  • 6. Pandas - Sort Values Ascending - Code.html
  • 7. Pandas - Sort Values for Smallest.mp4
    01:46
  • 8. Pandas - Sort Values for Smallest - Code.html
  • 9. Pandas - Selecting a range of values.mp4
    01:54
  • 10. Pandas - Selecting a range of values - Code.html
  • 11. Pandas - Return Random Rows.mp4
    02:21
  • 12. Pandas - Return Random Rows - Code.html
  • 1. Pandas - Reset Index.mp4
    02:00
  • 2. Pandas - Reset Index - Code.html
  • 3. Pandas - Greater than 0.1.mp4
    00:46
  • 4. Pandas - Greater than 0.1 - Code.html
  • 5. Pandas - Selecting with given Columns and Rows.mp4
    01:26
  • 6. Pandas - Selecting with given Columns and Rows - Code.html
  • 7. Pandas - Selecting Data with Loc & Slicing.mp4
    01:54
  • 8. Pandas - Selecting Data with Loc & Slicing - Code.html
  • 9. Pandas - Many ways of Retrieving Column.mp4
    01:16
  • 10. Pandas - Many ways of Retrieving Column - Code.html
  • 11. Pandas - Select Data related to Singapore.mp4
    01:23
  • 12. Pandas - Select Data related to Singapore - Code.html
  • 13. Pandas - Select years after 2019.mp4
    00:57
  • 14. Pandas - Select years after 2019 - Code.html
  • 15. Pandas - Generosity between two values.mp4
    01:28
  • 16. Pandas - Generosity between two values - Code.html
  • 17. Pandas - Life expectancy below 40.mp4
    00:49
  • 18. Pandas - Life expectancy below 40 - Code.html
  • 19. Pandas - Using columns to set condition.mp4
    00:53
  • 20. Pandas - Using columns to set condition - Code.html
  • 21. Pandas - Zimbabwe & Singapore.mp4
    01:32
  • 22. Pandas - Zimbabwe & Singapore - Code.html
  • 1. Introduction.mp4
    01:34
  • 2. Pandas - Checking for NaN.mp4
    03:47
  • 3. Pandas - Checking for NaN - Code.html
  • 4. Pandas - Removing NaN.mp4
    02:48
  • 5. Pandas - Removing NaN - Code.html
  • 6. Pandas - Removing NaN II.mp4
    02:30
  • 7. Pandas - Replacing NaN with a value.mp4
    04:56
  • 8. Pandas - Replacing NaN with a value - Code.html
  • 9. Pandas - Replacing NaN in one Column.mp4
    02:16
  • 10. Pandas - Replacing NaN in one Column - Code.html
  • 11. Pandas - Replacing NaN with mean, mode & median.mp4
    01:52
  • 12. Pandas - Data Cleaning - Sales.mp4
    05:17
  • 13. Pandas - Data Cleaning - Sales -Code.html
  • 1. Pandas - GroupBy Intro.mp4
    01:32
  • 2. Pandas - GroupBy Intro - Code.html
  • 3. Pandas - GroupBy Challenge & Solution.mp4
    02:32
  • 4. Pandas - GroupBy Challenge & Solution - Code.html
  • 1. Installation, Connection & Import.mp4
    07:54
  • 2. Installation, Connection & Import - Code.html
  • 3. Importing Fewer Columns From SQL to Pandas.mp4
    02:27
  • 4. Importing Fewer Columns From SQL to Pandas - Code.html
  • 5. Querying SQL Database from Pandas.mp4
    02:22
  • 6. Querying SQL Database from Pandas - Code.html
  • 7. Creating Table in SQL from Pandas.mp4
    03:47
  • 8. Creating Table in SQL from Pandas - Code.html
  • 9. read sql() method - A two in one Method.mp4
    02:47
  • 10. read sql() method - A two in one Method - Code.html
  • 1. Pandas - Importing Excel File.mp4
    01:00
  • 2. Pandas - Importing Excel File - Code.html
  • 3. Pandas - Cleaning Excel Data Set While Importing.mp4
    05:28
  • 4. Pandas - Cleaning Excel Data Set While Importing - Code.html
  • 5. Pandas - Saving an Excel File.mp4
    01:20
  • 6. Pandas - Saving an Excel File - Code.html
  • 7. Pandas Save Excel File Without Index.mp4
    00:48
  • 8. Pandas Save Excel File Without Index - Code.html
  • 9. Pandas - Shifting an Excel Sheet.mp4
    01:29
  • 10. Pandas - Shifting an Excel Sheet - Code.html
  • 1. Matplotlib - What is Matplotlib.mp4
    01:44
  • 2. Matplotlib - Installation.mp4
    01:25
  • 1. Matplotlib - Understaning Plot.mp4
    03:11
  • 2. Matplotlib - Understaning Plot.html
  • 3. Matplotlib - dot, x, square.mp4
    01:45
  • 4. Matplotlib - dot, x, square - Code.html
  • 5. Matplotlib - Plotting Multiple Points.mp4
    01:24
  • 6. Matplotlib - Plotting Multiple Points - Code.html
  • 7. Matplotlib - Plotting Without x-axis.mp4
    01:30
  • 8. Matplotlib - Plotting Without x-axis - Code.html
  • 1. Matplotlib - Understanding Markers.mp4
    01:50
  • 2. Matplotlib - Format String.mp4
    02:56
  • 3. Matplotlib - Marker Size.mp4
    01:32
  • 4. Matplotlib - Marker Colour.mp4
    01:48
  • 5. Matplotlib - Range of Marker Colours.mp4
    01:40
  • 1. Matplotlib - Line Style.mp4
    01:58
  • 2. Matplotlib - Line Colours.mp4
    02:24
  • 3. Matplotlib - Line Width.mp4
    00:47
  • 4. Matplotlib - Multiple Lines.mp4
    01:21
  • 5. Matplotlib - Multiple Lines More.mp4
    02:27
  • 1. Matplotlib - Understanding Figure.mp4
    07:17
  • 1. Matplotlib - Loc.mp4
    01:00
  • 2. Matplotlib - Label.mp4
    01:09
  • 3. Matplotlib - Title.mp4
    00:31
  • 4. Matplotlib - Font Properties.mp4
    02:21
  • 1. Matplotlib - Understanding Legend.mp4
    02:16
  • 2. Matplotlib - Understanding Legend - More.mp4
    01:09
  • 3. Matplotlib - Legend Repositioning.mp4
    00:38
  • 4. Matplotlib - Legend Outside.mp4
    01:56
  • 1. Matplotlib - Understanding Grid.mp4
    00:50
  • 2. Matplotlib - Grid Properties.mp4
    00:40
  • 1. Matplotlib - Understanding Subplot.mp4
    02:13
  • 2. Matplotlib - Understanding Subplot - More.mp4
    02:10
  • 3. Matplotlib - Subplot title and Super title.mp4
    01:24
  • 1. Matplotlib - Understanding Scatter Plot.mp4
    01:32
  • 2. Matplotlib - Scatter Plot - Colour Dots.mp4
    01:32
  • 3. Matplotlib - Scatter Plot - Size of Dots.mp4
    01:32
  • 4. Matplotlib - Scatter Plot - Size of Dots - Code.html
  • 5. Matplotlib - Scatter Plot - Colour Map.mp4
    05:35
  • 6. Matplotlib - Scatter Plot - Colour Map - Code.html
  • 7. Matplotlib - Scatter Plot - Alpha.mp4
    01:50
  • 8. Matplotlib - Scatter Plot - Groups.mp4
    01:29
  • 9. Matplotlib - Scatter Plot - Groups - Code.html
  • 10. Matplotlib - Scatter Plot - 20 Random Circles.mp4
    05:54
  • 1. Matplotlib - Introduction to Pie Chart.mp4
    01:14
  • 2. Matplotlib - Pie - Label.mp4
    00:55
  • 3. Matplotlib - Pie - Legend.mp4
    00:52
  • 4. Matplotlib - Pie - Legend Title.mp4
    00:39
  • 5. Matplotlib - Pie - Explode.mp4
    02:01
  • 6. Matplotlib - Shadow for Widget.mp4
    00:44
  • 7. Matplotlib - Pie - Colour.mp4
    00:49
  • 1. Matplotlib - Understanding Bar Chart.mp4
    02:41
  • 2. Matplotlib - Bar - Increasing & Reducing Font Size.mp4
    01:25
  • 3. Matplotlib - Bar - Increasing & Reducing Font Size - Code.html
  • 4. Matplotlib - Bar - Changing Specific Bar Colour.mp4
    01:18
  • 5. Matplotlib - Bar - Changing Specific Bar Colour - Code.html
  • 1. Matplotlib - 3D - Introduction.mp4
    02:02
  • 2. Matplotlib - 3D - Introduction - Code.html
  • 3. Matplotlib - 3D with Scatter Plot.mp4
    04:48
  • 4. Matplotlib - 3D with Scatter Plot - Code.html
  • 1. Understanding Trigonometric (Sin, Cos & Tan) Plotting.mp4
    02:34
  • 2. Understanding Trigonometric (Sin, Cos & Tan) Plotting - Code.html
  • 1. Challenge & Solution - 1.mp4
    01:11
  • 2. Challenge & Solution - 1 - Code.html
  • 3. Challenge & Solution - 2.mp4
    01:48
  • 4. Challenge & Solution - 2 - Code.html
  • 5. Challenge & Solution - 3.mp4
    02:40
  • 6. Challenge & Solution - 3 - Code.html
  • 7. Challenge & Solution - 4.mp4
    01:21
  • 8. Challenge & Solution - 4 - Code.html
  • 9. Challenge & Solution - 5.mp4
    04:59
  • 10. Challenge & Solution - 5 - Code.html
  • 11. Challenge & Solution - 6.mp4
    02:22
  • 12. Challenge & Solution - 6- Code.html
  • 1. Challenge & Solution.mp4
    02:35
  • 2. Challenge & Solution - Code.html
  • 1. Challenge & Solution.mp4
    02:31
  • 2. Challenge & Solution - Code.html
  • 1. Challenge & Solution - 1.mp4
    03:54
  • 2. Challenge & Solution - 1 - Code.html
  • 3. Challenge & Solution - 2.mp4
    01:52
  • 4. Challenge & Solution - 2 - Code.html
  • 5. Challenge & Solution - 3.mp4
    05:39
  • 6. Challenge & Solution - 3 - Code.html
  • 7. Challenge & Solution - 4.mp4
    02:31
  • 8. Challenge & Solution - 4 - Code.html
  • 1. Challenge & Solution - 1.mp4
    05:36
  • 2. Challenge & Solution - 1 - Code.html
  • 3. Challenge & Solution - 2.mp4
    04:44
  • 4. Challenge & Solution - 2 - Code.html
  • 5. Challenge & Solution - 3.mp4
    05:19
  • 6. Challenge & Solution - 3 - Code.html
  • 1. Challenge & Solution.mp4
    07:36
  • 2. Challenge & Solution - Code.html
  • 1. Challenge & Solution - 1.mp4
    06:05
  • 2. Challenge & Solution - 1 - Code.html
  • 3. Challenge & Solution - 2.mp4
    05:04
  • 4. Challenge & Solution - 2 - Code.html
  • 1. Mathematics, Probability & Statistics for Machine Learning.html
  • 1. Please check out my other courses.html
  • Description


    Python NumPy, Pandas, and Matplotlib for Data Analysis, Data Science and Machine Learning. Pre-machine learning Analysis

    What You'll Learn?


    • Go from absolute beginner to become a confident Python NumPy, Pandas and Matplotlib user
    • Dare to get the most out of Python NumPy, Pandas and Matplotlib
    • Go deeper to understand complex topics in Python NumPy, Pandas and data visualisation
    • Learn Python NumPy, Pandas and Matplotlib through several exercises and solutions
    • Acquire the required Python NumPy, Pandas and Matplotlib knowledge you need to excel in Data Science, Machine Learning, Ai and Deep Learning
    • Be trained by expert

    Who is this for?


  • All levels of students
  • What You Need to Know?


  • Just a little knowledge of Python
  • More details


    Description

    Welcome to NumPy, Pandas and Matplotlib A-Zâ„¢: for Machine Learning

    NumPy is a leading scientific computing library in Python while Pandas is for data manipulation and analysis. Also, learn to use Matplotlib for data visualization. Whether you are trying to go into Data Science, dive into machine learning, or deep learning, NumPy and Pandas are the top Modules in Python you should understand to make the journey smooth for you. In this course, we are going to start from the basics of Python NumPy and Pandas to the advanced NumPy and Pandas. This course will give you a solid understanding of NumPy, Pandas, and their functions.

    At the end of the course, you should be able to write complex arrays for real-life projects, manipulate and analyze real-world data using Pandas.


    WHO IS THIS COURSE FOR? 


    √ This course is for you if you want to learn NumPy, Pandas, and Matplotlib for the first time or get a deeper knowledge of NumPy and Pandas to increase your productivity with deep and Machine learning.

    √ This course is for you if you are coming from other programming languages and want to learn Python NumPy and Pandas fast and know it really well.

    √ This course is for you if you are tired of NumPy,  Pandas, and Matplotlib courses that are too brief, too simple, or too complicated.

    √ This course is for you if you want to build real-world applications using NumPy or Panda and visualize them with Matplotlib.

    √ This course is for you if you have to get the prerequisite knowledge to understanding Data Science and Machine Learning using NumPy and Pandas.

    √ This course is for you if you want to master the in-and-out of NumPy, Pandas, and data visualization.

    √ This course is for you if you want to learn NumPy and Pandas by doing exciting real-life challenges that will distinguish you from the crowd.

    √ This course is for you if plan to pass an interview soon.



    Who this course is for:

    • All levels of students

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Donatus Obomighie | PhD, MSc, PMP
    Donatus Obomighie | PhD, MSc, PMP
    Instructor's Courses
    Donatus holds a first degree in Electrical Engineering with first class, MSc in Computer Science, Ph.D. in Management, and more than fifteen (15) industrial certificates.  For over two decades, Don has worked as Process Engineer, Network Architect, Project Manager, and Data Scientist in Banking, Oil & Gas, and IT industries.With several years of experience in teaching, Donatus has empowered many IT professionals in the area of Network Engineering, Programming, Data Science, and Machine learning both offline and online. He provides training on data science and related courses to individual and corporate clients. Many students who graduated from his classes end up gaining full-time employment.  He had also taught in India, Singapore, and Malaysia. He understands what makes students enjoy lectures and what makes them assimilate with ease.His recent focus is to bring you the best training in Database, Data Science, Machine Learning, and related courses.Do you have an interest in learning with a lot of practice?Join him right away!Industrial Certificates:1 - Project Management Professional (PMP) – Above Target2 - Neo4j Certified Professional3 - Check Point Certified Security Expert (CCSE)4 - Check Point Certified Security Administrator (CCSA)5 - Cisco Certified Network Professional (CCNP)6 - Cisco Certified Network Associate (CCNA)7 - Cisco Certified Design Professional (CCDP)8 - Cisco Certified Design Associate (CCDA)9 - Cisco Certified Network Professional Voice (CCNPv)10 - Cisco Certified Network Associate Voice (CCNAv)11 - Cisco Advanced Wireless Field Specialist12 - Certified Wireless Security Professional (CWSP)13 - Certified Wireless Network Administrator (CWNA)14 - Juniper Networks Certified Internet Specialist (JNCIS) 15 - CompTia Security+ Certified Professional16 - NEBOSH International General Certificate (NEBOSH)17 - BS OHSAS Internal Auditor Certificate (OHSAS 18001:2007)18 - IOSH Managing Safely (IOSH)19 - IOSH Working Safely (IOSH)
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 331
    • duration 11:31:44
    • English subtitles has
    • Release Date 2024/03/21