Companies Home Search Profile

Natural Language Processing in Action

Focused View

17:24:59

65 View
  • 00001 Part 1. Wordy machines.mp4
    01:36
  • 00002 Natural language vs. programming language.mp4
    03:58
  • 00003 The magic.mp4
    05:58
  • 00004 The math.mp4
    05:45
  • 00005 Practical applications.mp4
    05:17
  • 00006 Language through a computer s eyes.mp4
    09:20
  • 00007 A simple chatbot.mp4
    09:18
  • 00008 Another way.mp4
    10:50
  • 00009 A brief overflight of hyperspace.mp4
    06:42
  • 00010 Word order and grammar.mp4
    04:28
  • 00011 A chatbot natural language pipeline.mp4
    06:25
  • 00012 Processing in depth.mp4
    06:53
  • 00013 Natural language IQ.mp4
    07:30
  • 00014 Challenges a preview of stemming.mp4
    09:29
  • 00015 Building your vocabulary with a tokenizer Part 1.mp4
    12:11
  • 00016 Building your vocabulary with a tokenizer Part 2.mp4
    10:11
  • 00017 Dot product.mp4
    04:13
  • 00018 A token improvement.mp4
    11:26
  • 00019 Extending your vocabulary with n-grams Part 1.mp4
    08:20
  • 00020 Extending your vocabulary with n-grams Part 2.mp4
    07:15
  • 00021 Normalizing your vocabulary Part 1.mp4
    09:11
  • 00022 Normalizing your vocabulary Part 2.mp4
    07:56
  • 00023 Normalizing your vocabulary Part 3.mp4
    08:53
  • 00024 Sentiment.mp4
    06:21
  • 00025 VADER A rule-based sentiment analyzer.mp4
    06:37
  • 00026 Math with words TF-IDF vectors.mp4
    04:07
  • 00027 Bag of words.mp4
    08:05
  • 00028 Vectorizing.mp4
    03:53
  • 00029 Vector spaces.mp4
    11:49
  • 00030 Zipf s Law.mp4
    05:09
  • 00031 Topic modeling.mp4
    08:31
  • 00032 Relevance ranking.mp4
    07:42
  • 00033 Okapi BM25.mp4
    04:13
  • 00034 From word counts to topic scores.mp4
    04:52
  • 00035 TF-IDF vectors and lemmatization.mp4
    09:01
  • 00036 Thought experiment.mp4
    10:44
  • 00037 An algorithm for scoring topics.mp4
    05:51
  • 00038 An LDA classifier.mp4
    09:30
  • 00039 Latent semantic analysis.mp4
    07:54
  • 00040 Your thought experiment made real.mp4
    06:55
  • 00041 Singular value decomposition.mp4
    06:42
  • 00042 U left singular vectors.mp4
    06:05
  • 00043 SVD matrix orientation.mp4
    06:26
  • 00044 Principal component analysis.mp4
    07:36
  • 00045 Stop horsing around and get back to NLP.mp4
    09:22
  • 00046 Using truncated SVD for SMS message semantic analysis.mp4
    10:10
  • 00047 Latent Dirichlet allocation LDiA.mp4
    10:28
  • 00048 LDiA topic model for SMS messages.mp4
    12:26
  • 00049 Distance and similarity.mp4
    07:25
  • 00050 Steering with feedback.mp4
    06:05
  • 00051 Topic vector power.mp4
    04:46
  • 00052 Semantic search.mp4
    08:37
  • 00053 Part 2. Deeper learning neural networks.mp4
    02:37
  • 00054 Neural networks the ingredient list.mp4
    08:54
  • 00055 Detour through bias Part 1.mp4
    09:54
  • 00056 Detour through bias Part 2.mp4
    08:47
  • 00057 Detour through bias Part 3.mp4
    11:00
  • 00058 Let s go skiing the error surface.mp4
    07:56
  • 00059 Keras - Neural networks in Python.mp4
    08:53
  • 00060 Semantic queries and analogies.mp4
    07:13
  • 00061 Word vectors.mp4
    10:04
  • 00062 Vector-oriented reasoning.mp4
    07:12
  • 00063 How to compute Word2vec representations Part 1.mp4
    09:31
  • 00064 How to compute Word2vec representations Part 2.mp4
    08:37
  • 00065 How to use the gensim.word2vec module.mp4
    05:08
  • 00066 How to generate your own word vector representations.mp4
    07:15
  • 00067 fastText.mp4
    05:42
  • 00068 Visualizing word relationships.mp4
    10:29
  • 00069 Unnatural words.mp4
    05:53
  • 00070 Learning meaning.mp4
    07:52
  • 00071 Toolkit.mp4
    03:02
  • 00072 Convolutional neural nets.mp4
    06:41
  • 00073 Padding.mp4
    05:43
  • 00074 Narrow windows indeed.mp4
    03:22
  • 00075 Implementation in Keras - prepping the data.mp4
    08:14
  • 00076 Convolutional neural network architecture.mp4
    09:34
  • 00077 The cherry on the sundae.mp4
    09:04
  • 00078 Using the model in a pipeline.mp4
    06:51
  • 00079 Loopy recurrent neural networks RNNs.mp4
    03:59
  • 00080 Remembering with recurrent networks.mp4
    08:03
  • 00081 Backpropagation through time.mp4
    09:30
  • 00082 Recap.mp4
    10:06
  • 00083 Putting things together.mp4
    05:29
  • 00084 Hyperparameters.mp4
    05:30
  • 00085 Predicting.mp4
    08:16
  • 00086 LSTM Part 1.mp4
    09:47
  • 00087 LSTM Part 2.mp4
    08:37
  • 00088 Backpropagation through time.mp4
    09:31
  • 00089 Back to the dirty data.mp4
    09:09
  • 00090 My turn to chat.mp4
    03:54
  • 00091 My turn to speak more clearly.mp4
    10:56
  • 00092 Learned how to say but not yet what.mp4
    05:10
  • 00093 Encoder-decoder architecture.mp4
    04:57
  • 00094 Decoding thought.mp4
    05:19
  • 00095 Look familiar.mp4
    08:06
  • 00096 Assembling a sequence-to-sequence pipeline.mp4
    05:06
  • 00097 Sequence encoder.mp4
    05:51
  • 00098 Training the sequence-to-sequence network.mp4
    03:52
  • 00099 Building a chatbot using sequence-to-sequence networks.mp4
    07:36
  • 00100 Enhancements.mp4
    05:12
  • 00101 In the real world.mp4
    05:31
  • 00102 Part 3. Getting real real-world NLP challenges.mp4
    00:55
  • 00103 Named entities and relations.mp4
    03:00
  • 00104 A knowledge base.mp4
    09:10
  • 00105 Regular patterns.mp4
    08:53
  • 00106 Information worth extracting.mp4
    02:46
  • 00107 Extracting dates.mp4
    09:11
  • 00108 Extracting relationships relations.mp4
    09:36
  • 00109 Relation normalization and extraction.mp4
    08:12
  • 00110 Why won t split . work.mp4
    08:35
  • 00111 Language skill.mp4
    06:40
  • 00112 Modern approaches Part 1.mp4
    09:35
  • 00113 Modern approaches Part 2.mp4
    09:16
  • 00114 Pattern-matching approach.mp4
    05:13
  • 00115 A pattern-matching chatbot with AIML Part 1.mp4
    04:01
  • 00116 A pattern-matching chatbot with AIML Part 2.mp4
    09:46
  • 00117 Grounding.mp4
    06:31
  • 00118 Retrieval search.mp4
    08:18
  • 00119 Example retrieval-based chatbot.mp4
    10:21
  • 00120 Generative models.mp4
    08:02
  • 00121 Four-wheel drive.mp4
    03:19
  • 00122 Design process.mp4
    05:38
  • 00123 Trickery.mp4
    09:04
  • 00124 Too much of a good thing data.mp4
    03:14
  • 00125 Optimizing NLP algorithms.mp4
    06:45
  • 00126 Advanced indexing.mp4
    07:06
  • 00127 Advanced indexing with Annoy.mp4
    05:17
  • 00128 Why use approximate indexes at all.mp4
    05:50
  • 00129 Constant RAM algorithms.mp4
    05:34
  • 00130 Parallelizing your NLP computations.mp4
    08:28
  • 00131 Reducing the memory footprint during model training.mp4
    07:27
  • 00132 Anaconda3.mp4
    07:05
  • 00133 Mac.mp4
    07:19
  • 00134 Working with strings.mp4
    05:59
  • 00135 Regular expressions.mp4
    09:18
  • 00136 Vectors.mp4
    08:06
  • 00137 Distances Part 2.mp4
    04:49
  • 00138 Data selection and avoiding bias.mp4
    06:50
  • 00139 Knowing is half the battle.mp4
    06:36
  • 00140 Holding your model back.mp4
    04:22
  • 00141 Imbalanced training sets.mp4
    06:11
  • 00142 Performance metrics.mp4
    09:08
  • 00143 High-dimensional vectors are different.mp4
    04:55
  • 00144 High-dimensional thinking.mp4
    08:42
  • 00145 High-dimensional indexing.mp4
    04:34
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Manning Publications is an American publisher specializing in content relating to computers. Manning mainly publishes textbooks but also release videos and projects for professionals within the computing world.
    • language english
    • Training sessions 145
    • duration 17:24:59
    • Release Date 2023/11/06