Nanodegree Program - Become a Deep Reinforcement Learning Expert
Focused View
11:48:30
125 View
01. Welcome To DRLND-i1-l0n1ntes.mp4
02:07
01. Welcome to the Deep Reinforcement Learning Nanodegree.html
02. RL In The Real World-IGlAyGbOTHo.mp4
01:16
02. RL in the Real World.html
03. Overview of the ND Program.html
04. Projects You Will Build.html
04. Unity Machine Learning Agents-jC12h4UAxqs.mp4
02:34
05. Play Tennis!.html
06. Deadline Policy.html
07. Udacity Support.html
08. Community Guidelines.html
index.html
- img
- banana.zip
- bipedal-walker.zip
- dumb-soccer.zip
- game-example.zip
- lunar-lander.zip
- mjg2mzcyma.zip
- mountain-car-cts.zip
- output.zip
- reacher.zip
- screen-shot-2018-06-12-at-5.07.10-pm.zip
- screen-shot-2018-07-06-at-11.33.53-am.zip
- soccer.zip
01. What It Takes.html
02. Reviews.html
03. Knowledge.html
04. Student Hub.html
index.html
- img
- image4.zip
- image8.zip
- screen-shot-2018-11-07-at-9.55.40-pm.zip
- screen-shot-2018-11-07-at-9.59.16-pm.zip
- screen-shot-2018-11-07-at-10.23.07-pm.zip
- screen-shot-2018-11-09-at-6.28.07-pm.zip
01. FAQ.html
02. Support.html
index.html
- img
- screen-shot-2018-11-09-at-7.38.47-pm.zip
- screen-shot-2018-11-09-at-7.48.22-pm.zip
- screen-shot-2018-11-09-at-7.49.34-pm.zip
- screen-shot-2018-11-09-at-7.49.50-pm.zip
01. Learning Plan.html
02. Reference Guide.html
03. OpenAI Gym.html
04. GitHub Repository.html
05. AWS Credits.html
06. Student Resources.html
index.html
- img
- 42135602-b0335606-7d12-11e8-8689-dd1cf9fa11a9.zip
- download.zip
- grokking-deeprl.zip
- image4.zip
- openaigym-gif.zip
- paper-notes.zip
- udacitylogo.zip
- unknown.zip
01. Introduction.html
01. Introduction-6jSFl5kxIBs.mp4
01:32
02. Applications.html
02. Applications-CV6B84mKRNM.mp4
02:16
03. The Setting.html
03. The Setting-nh8Gwdu19nc.mp4
04:58
04. Resources.html
04. Resources-_YPqfAnCqtk.mp4
01:22
index.html
01. Introduction.html
01. Introduction-X_9l_ZqXXBA.mp4
00:31
02. The Setting, Revisited.html
02. The Setting, Revisited-V6Q1uF8a6kA.mp4
04:07
03. Episodic vs. Continuing Tasks.html
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4
01:59
04. Quiz Test Your Intuition.html
05. Quiz Episodic or Continuing.html
06. The Reward Hypothesis.html
06. The Reward Hypothesis-uAqNwgZ49JE.mp4
02:20
07. Goals and Rewards, Part 1.html
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4
02:16
08. Goals and Rewards, Part 2.html
08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4
03:55
09. Quiz Goals and Rewards.html
10. Cumulative Reward.html
10. Cumulative Reward-ysriH65lV9o.mp4
03:51
11. Discounted Return.html
11. Discounted Return-opXGNPwwn7g.mp4
05:09
12. Quiz Pole-Balancing.html
13. MDPs, Part 1.html
13. MDPs, Part 1-NBWbluSbxPg.mp4
02:46
14. MDPs, Part 2.html
14. MDPs, Part 2-CUTtQvxKkNw.mp4
05:08
15. Quiz One-Step Dynamics, Part 1.html
16. Quiz One-Step Dynamics, Part 2.html
17. MDPs, Part 3.html
17. MDPs, Part 3-UlXHFbla3QI.mp4
02:08
18. Finite MDPs.html
19. Summary.html
index.html
- img
- 1omsg2-mkguagky1c64uflw.zip
- article-2278590-1792e332000005dc-394-634x615.zip
- backgammonboard.svg.zip
- chess-game.zip
- go.zip
- index.zip
- maze.zip
- pup.zip
- screen-shot-2017-09-20-at-12.02.06-pm.zip
- screen-shot-2017-09-21-at-3.08.03-pm.zip
- screen-shot-2017-09-21-at-3.25.10-pm.zip
- screen-shot-2017-09-21-at-3.46.12-pm.zip
- screen-shot-2017-09-21-at-4.34.08-pm.zip
- screen-shot-2017-09-21-at-12.20.30-pm.zip
- screen-shot-2017-09-21-at-12.20.50-pm.zip
01. Introduction.html
01. Introduction-9Wyf5Zsska8.mp4
00:53
02. Policies.html
02. Policies-hc3LrvaC13U.mp4
03:24
03. Quiz Interpret the Policy.html
04. Gridworld Example.html
04. Gridworld Example-XeHBmPFqTsE.mp4
01:38
05. State-Value Functions.html
05. State-Value Functions-llakAjwox_8.mp4
03:16
06. Bellman Equations.html
06. Bellman Equations-UgIaDMvSdUo.mp4
02:38
07. Quiz State-Value Functions.html
08. Optimality.html
08. Optimality-j231aRV74QM.mp4
03:17
09. Action-Value Functions.html
09. Action-Value Functions-KJLaRfOOPGA.mp4
03:22
10. Quiz Action-Value Functions.html
11. Optimal Policies.html
11. Optimal Policies-2rguYpVyCto.mp4
02:45
12. Quiz Optimal Policies.html
13. Summary.html
index.html
- img
- screen-shot-2017-08-31-at-3.27.10-pm.zip
- screen-shot-2017-09-21-at-12.20.30-pm.zip
- screen-shot-2017-09-24-at-4.28.04-pm.zip
- screen-shot-2017-09-25-at-5.51.40-pm.zip
- screen-shot-2017-09-25-at-6.02.37-pm.zip
- screen-shot-2017-09-25-at-9.18.00-pm.zip
- screen-shot-2017-09-25-at-11.35.38-am.zip
01. L601 Intro RENDER V2-3H5x0lstvmo.mp4
00:56
01. Review.html
02. Gridworld Example.html
02. L602 Gridworld Example RENDER V2-2-Lwibg_IfmrA.mp4
02:18
03. L603 Monte Carlo Methods RENDER V3-2-titaMCRl224.mp4
04:56
03. Monte Carlo Methods.html
04. L604 MC Prediction Part 1RENDER V2-6ts9gdIS6vg.mp4
03:09
04. MC Prediction - Part 1.html
05. L605 MC Prediction Part 2 RENDER V3-jR49ZyKuJ98.mp4
01:20
05. MC Prediction - Part 2.html
06. L606 MC Prediction Part 3 RENDERv1 V4-9LP6uXdmWxQ.mp4
01:30
06. MC Prediction - Part 3.html
07. OpenAI Gym BlackJackEnv.html
08. Workspace - Introduction.html
09. Coding Exercise.html
09. MC Prediction - Solution Walkthrough-Pwiqk7Pncgc.mp4
07:18
10. Workspace.html
11. Greedy Policies.html
11. L611 Greedy Policies RENDER V4-DH6c-aODMLU.mp4
02:01
12. Epsilon-Greedy Policies.html
12. L612 Epsilon Greedy Policies RENDER V4-PxJMtlR06MY.mp4
03:35
13. MC Control.html
14. Exploration vs. Exploitation.html
15. Incremental Mean.html
15. L615 Incremental Mean RENDER V4-h-8MB7V1LiE.mp4
02:29
16. Constant-alpha.html
16. L617 Constant Alpha Edits RENDER V1-LetHoOtNdJc.mp4
00:51
16. MC Control Constant-alpha-QFV1nI9Zpoo.mp4
02:32
17. Coding Exercise.html
17. M1 L6 S2 V1-6E_3NJcoxmU.mp4
06:44
18. Workspace.html
19. Summary.html
index.html
- img
- 2-card-21.zip
- exploration-vs.-exploitation.zip
- jupyter.zip
- latex-image-1-copy.zip
- screen-shot-2017-09-20-at-12.02.06-pm.zip
- screen-shot-2017-09-25-at-11.35.38-am.zip
- screen-shot-2017-10-04-at-4.58.58-pm.zip
- screen-shot-2017-10-04-at-5.01.26-pm.zip
- screen-shot-2017-10-05-at-3.55.40-pm.zip
- screen-shot-2018-04-30-at-10.27.56-am.zip
- screen-shot-2018-05-01-at-11.12.36-pm.zip
- screen-shot-2018-05-04-at-2.49.48-pm.zip
- screen-shot-2018-05-04-at-2.51.59-pm.zip
- screen-shot-2018-05-04-at-3.14.47-pm.zip
- screen-shot-2018-05-05-at-1.20.10-pm.zip
- screen-shot-2018-05-10-at-6.10.16-pm.zip
01. Introduction.html
01. Introduction-yXErXQulI_o.mp4
02:04
02. Review MC Control Methods.html
03. L602 Gridworld Example RENDER V2-2-Lwibg_IfmrA.mp4
02:18
03. Quiz MC Control Methods.html
03. Quiz MC Control Methods-ZwIg6LDMyuo.mp4
01:52
04. TD Control Sarsa.html
04. TD Control Sarsa Part 1-HYV0SP9wm7g.mp4
02:24
04. TD Control Sarsa Part 2-U_CV-UC9G2c.mp4
01:40
05. Quiz Sarsa.html
06. TD Control Q-Learning.html
06. TD Control Sarsamax-4DxoYuR7aZ4.mp4
03:14
07. Quiz Q-Learning.html
08. TD Control Expected Sarsa.html
08. TD Control Expected Sarsa-kEKupCyU0P0.mp4
00:50
09. Quiz Expected Sarsa.html
10. TD Control Theory and Practice.html
11. OpenAI Gym CliffWalkingEnv.html
12. Workspace - Introduction.html
13. Coding Exercise.html
14. Workspace.html
15. Analyzing Performance.html
16. Quiz Check Your Understanding.html
17. Summary.html
index.html
- img
- environment.zip
- episode.zip
- exploration-vs.-exploitation.zip
- jupyter.zip
- matengai-of-kuniga-coast-in-oki-island-shimane-pref600.zip
- qtable2.zip
- screen-shot-2017-10-17-at-11.02.44-am.zip
- screen-shot-2017-12-17-at-12.49.34-pm.zip
- screen-shot-2018-03-07-at-2.33.19-pm.zip
- screen-shot-2018-03-07-at-2.43.07-pm.zip
- screen-shot-2018-03-07-at-3.16.47-pm.zip
- screen-shot-2018-03-07-at-3.53.08-pm.zip
- screen-shot-2018-05-01-at-11.10.05-pm.zip
- screen-shot-2018-05-04-at-6.14.28-pm.zip
- screen-shot-2018-05-04-at-6.14.42-pm.zip
- screen-shot-2018-05-04-at-6.14.56-pm.zip
- screen-shot-2018-05-10-at-6.10.16-pm.zip
- screen-shot-2018-05-24-at-11.45.52-am.zip
01. Introduction.html
02. Instructions.html
03. Mini Project.html
index.html
- img
- new-tab.zip
- open-agent-monitor-main.zip
- open-terminal.zip
- run-main.zip
- screen-shot-2018-04-14-at-3.13.15-pm.zip
01. Introducing Arpan.html
02. Introduction-GPjK124RU5g.mp4
04:40
02. Lesson Overview.html
03. Discrete vs. Continuous Spaces.html
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4
04:40
04. Quiz Space Representations.html
05. Discretization.html
05. Discretization-j2eZyUpy--E.mp4
03:06
06. Exercise Discretization.html
07. Workspace Discretization.html
08. Tile Coding.html
08. Tile Coding-BRs7AnTZ_8k.mp4
02:37
09. Exercise Tile Coding.html
10. Workspace Tile Coding.html
11. Coarse Coding.html
11. Coarse Coding-Uu1J5KLAfTU.mp4
02:12
12. Function Approximation.html
12. Function Approximation-UTGWVY6jEdg.mp4
02:56
13. Linear Function Approximation.html
13. Linear Function Approximation-OJ5wrB7o-pI.mp4
04:57
14. Kernel Functions.html
14. Kernel Functions-RdkPVYyVOvU.mp4
02:03
15. Non-Linear Function Approximation.html
15. Non-Linear Function Approximation-rITnmpD2mN8.mp4
01:08
16. Summary.html
16. Summary-MTEBk43oByU.mp4
01:07
index.html
- img
- arpan-headshot.zip
- jupyter.zip
- poker-hand-3-of-a-kind.zip
- qtable.zip
- screen-shot-2018-05-02-at-12.24.35-am.zip
- screen-shot-2018-05-03-at-11.30.05-pm.zip
01. Arpan Rollercoaster-Rf6cCYRqV58.mp4
01:08
01. Congratulations!.html
02. What can you do now.html
index.html
- img
- dqn.zip
01. Study Plan.html
02. Deep RL for Robotics.html
02. Deep RL in Robotics-IjG_IWJdb1w.mp4
02:02
index.html
- img
- output.zip
- udacitylogo.zip
01. DQN Overview-WgiAvr7COR0.mp4
01:14
01. From RL to Deep RL.html
01. From RL to Deep RL-7HLJ0uaR1F0.mp4
01:54
02. Deep Q-Networks.html
02. Deep Q-Networks-GgtR_d1OB-M.mp4
04:18
03. Experience Replay.html
03. Experience Replay-wX_-SZG-YMQ.mp4
06:53
04. Fixed Q-Targets.html
04. Fixed Q-Targets-SWpyiEezfp4.mp4
04:03
05. Deep Q-Learning Algorithm.html
05. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4
03:08
06. Coding Exercise.html
07. Workspace.html
08. Deep Q-Learning Improvements.html
09. 10 Double DQN V2-PGCEMLujiGI.mp4
02:56
09. Double DQN.html
10. 10 Prioritized Experience Replay V1-cN8z-7Ze9L8.mp4
04:34
10. Prioritized Experience Replay.html
11. 10 Dueling DQN V2-zZeHbPs39Ls.mp4
01:19
11. Dueling DQN.html
12. Rainbow.html
13. Summary.html
13. Summary-x6JggcDTcys.mp4
00:49
index.html
- img
- dqn.zip
- dueling-q-network.zip
- jupyter.zip
- rainbow-1445337690d8q.zip
- screen-shot-2018-06-30-at-6.40.09-pm.zip
- screen-shot-2018-06-30-at-7.03.40-pm.zip
- sonic.zip
01. 01 Introduction RENDER V2-dfeawuScC7k.mp4
01:16
01. Introduction.html
02. 02 Welcome!-1oElWzRt-lU.mp4
01:17
02. 03 Transitioning-BvDvxw8e0CY.mp4
01:18
02. C++ for Robotics.html
03. 03 CC API HSSC HS RENDER V3-a9-HdpCaYW4.mp4
00:54
03. CC++ API.html
04. Catch Sample.html
05. Udacity Workspace.html
06. Fruit Sample.html
07. Rover Sample.html
08. Arm Sample.html
09. 09 Jetson TX2 Edits V1-M26z7vTti_g.mp4
01:14
09. Jetson Overview-i56qM6NNW9A.mp4
02:44
09. Jetson TX2.html
10. 10 Summary HS V3-cb1FGgZIitc.mp4
00:37
10. Summary.html
index.html
- img
- armenv.zip
- fruit.zip
- nv-rl-stack-diagram.zip
- output.zip
- rl-gazebo-fall.zip
01. Unity ML-Agents.html
02. The Environment - Introduction.html
03. The Environment - Play.html
04. Getting Started-ltz2GhFv04A.mp4
00:23
04. The Environment - Explore.html
05. Project Instructions.html
06. Benchmark Implementation.html
07. Not sure where to start.html
08. Collaborate!.html
09. Workspace.html
10. (Optional) Challenge Learning from Pixels.html
Project Description - Navigation.html
Project Rubric - Navigation.html
index.html
- img
- 849-1234251683jkyt.zip
- 2018-02-27-16-05-37.zip
- banana.zip
- bananas-save.zip
- idea-2579308-640.zip
- screen-shot-2018-06-08-at-1.04.47-pm.zip
- unity-wide.zip
01. Opportunities in DRL.html
02. Career Services-cuKecPpZ7PM.mp4
02:11
02. Meet the Careers Team.html
03. Access Your Career Portal.html
04. Your Udacity Professional Profile.html
index.html
- img
- get-hired-with-the-udacity-career-portal.zip
- screen-shot-2017-10-27-at-1.49.58-pm.zip
- screen-shot-2018-07-27-at-1.24.38-pm.zip
- udacitylogo-copy.zip
01. Prove Your Skills With GitHub.html
02. Introduction.html
02. Introduction-Vnj2VNQROtI.mp4
00:54
03. GitHub profile important items.html
03. GitHub profile important items-prvPVTjVkwQ.mp4
01:35
04. Good GitHub repository.html
04. Good GitHub repository-qBi8Q1EJdfQ.mp4
01:10
05. Interview with Art - Part 1.html
05. Interview with Art - Part 1-ClLYamtaO-Q.mp4
02:11
06. Identify fixes for example bad profile.html
06. Identify fixes for example bad profile-AF07y1oAim0.mp4
00:12
06. Identify fixes for example bad profile-ncFtwW5urHk.mp4
00:51
07. Quick Fixes #1.html
07. Quick Fixes-Lb9e2KemR6I.mp4
01:11
08. Quick Fixes #2.html
08. Quick Fixes #2-It6AEuSDQw0.mp4
00:13
09. Writing READMEs with Walter.html
09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4
00:40
10. Interview with Art - Part 2.html
10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4
01:19
11. Commit messages best practices.html
12. Reflect on your commit messages.html
12. Reflect on your commit messages-_0AHmKkfjTo.mp4
00:16
13. Participating in open source projects.html
13. Participating in open source projects-OxL-gMTizUA.mp4
00:15
14. Interview with Art - Part 3.html
14. Interview with Art - Part 3-M6PKr3S1rPg.mp4
02:30
15. Participating in open source projects 2.html
15. Participating in open source projects 2-elZCLxVvJrY.mp4
00:54
16. Starring interesting repositories.html
16. Starring interesting repositories-U3FUxkm1MxI.mp4
00:13
16. Starring interesting repositories-ZwMY5rAAd7Q.mp4
00:19
17. Next Steps.html
Project Description - Optimize Your GitHub Profile.html
Project Rubric - Optimize Your GitHub Profile.html
index.html
- img
- 6485174133.zip
- 6499079068.zip
- 6509638772.zip
- 6551597473.zip
- mat-leonard-circle.zip
01. Study Plan.html
index.html
- img
- udacitylogo.zip
01. M3 L2 C01 V2-mMnhi8yzwKk.mp4
02:38
01. Policy-Based Methods.html
02. M3 L2 C02 V1-v8tGjlc2aG4.mp4
01:38
02. Policy Function Approximation.html
03. More on the Policy.html
04. Hill Climbing.html
04. M3 L2 C04 V3-5E86a0OyVyI.mp4
03:48
05. Hill Climbing Pseudocode.html
05. M3 L2 C05 V1-0XzzqIXyax0.mp4
01:10
06. Beyond Hill Climbing.html
06. M2L3 04 V1-QicxmyE5vTo.mp4
03:53
07. M3 L2 C07 V3-2poDljPvY58.mp4
01:36
07. More Black-Box Optimization.html
08. Coding Exercise.html
09. Workspace.html
10. OpenAI Request for Research.html
11. M2L3 02 V2-ToS8vXGdODE.mp4
06:37
11. Why Policy-Based Methods.html
12. Summary.html
index.html
- img
- cartpole.zip
- jupyter.zip
- screen-shot-2018-06-26-at-11.53.35-am.zip
- screen-shot-2018-06-28-at-6.46.54-pm.zip
- screen-shot-2018-07-01-at-10.54.05-am.zip
- screen-shot-2018-07-01-at-11.19.22-am.zip
- screen-shot-2018-07-01-at-11.28.57-am.zip
01. M3L3 C01 V3-ZEhQRASU5O4.mp4
03:34
01. What are Policy Gradient Methods.html
02. M3L3 C02 V6-zoOgRoaxGiU.mp4
03:07
02. The Big Picture.html
03. Connections to Supervised Learning.html
03. M3L3 C03 V2-dJz_p4FKE-g.mp4
02:59
04. M3L3 C04 V2-St9ftvMQ_ks.mp4
02:23
04. Problem Setup.html
05. M3L3 C05 V2-o6CI2q3IXEs.mp4
06:24
05. REINFORCE.html
06. (Optional) Derivation.html
07. Coding Exercise.html
08. Workspace.html
09. What's Next.html
10. Summary.html
index.html
- img
- 350px-normal-distribution-pdf.zip
- grad-descent.zip
- jupyter.zip
- screen-shot-2018-07-17-at-4.44.10-pm.zip
- screen-shot-2018-07-27-at-2.25.43-pm.zip
01. Instructor Introduction.html
01. Instructor Introduction-sokSgNtGj9Y.mp4
00:45
02. Lesson Preview.html
02. Training an agent to play atari-pong!-w27mvWFBnvQ.mp4
01:40
03. Beyond REINFORCE.html
04. Noise Reduction.html
04. Noise Reduction-GCGqT2knFJ0.mp4
02:20
05. Credit Assignment.html
05. Credit Assignment-tfZw1moB25Y.mp4
01:26
06. Policy Gradient Quiz.html
07. pong with REINFORCE walkthrough-eKIjPrQWIgg.mp4
11:13
07. pong with REINFORCE (code walkthrough).html
08. pong with REINFORCE (workspace).html
09. Importance Sampling.html
09. Importance Sampling-cYPvWriOPIk.mp4
04:23
10. PPO Part 1 The Surrogate Function-Y-boYZlpO7g.mp4
02:28
10. PPO part 1- The Surrogate Function.html
11. PPO Part 2 Clipping Policy Updates-NRzjGGX6c34.mp4
04:07
11. PPO part 2- Clipping Policy Updates.html
12. PPO summary.html
12. TLPPO Summary V1-qRAUAAWA_kc.mp4
00:58
13. Pong with PPO walkthrough-XhfhR7Z01S0.mp4
05:10
13. pong with PPO (code walkthrough).html
14. pong with PPO (workspace).html
index.html
- img
- clipped-surrogate.zip
- clipped-surrogate-explained.zip
- policy-reward-cliff.zip
01. Introduction.html
01. M3L501 Introduction HS 1 V1-_OHo1pEaJcQ.mp4
01:43
02. M3 L5 02 Motivation V1-dpFPlDtdxyQ.mp4
02:42
02. Motivation.html
03. Bias and Variance.html
03. M3 L5 03 Bias And Variance V2-_vnkkwm46uU.mp4
02:04
04. M3 L5 04 Two Ways For Estimating Expected Returns V3-2W6yIBDvfsQ.mp4
04:08
04. Two Ways for Estimating Expected Returns.html
05. Baselines and Critics.html
05. M3 L5 05 Baselines And Critics V1-wqmqoiUuQHI.mp4
02:28
06. M3 L5 06 Policybased Valuebased And ActorCritic V1-iyin896PNEc.mp4
03:09
06. Policy-based, Value-Based, and Actor-Critic.html
07. A Basic Actor-Critic Agent.html
07. M3 L5 07 A Basic ActorCritic Agent V2-KdHQ24hBKho.mp4
01:58
08. A3C Asynchronous Advantage Actor-Critic, N-step.html
08. M3 L5 08 A3C Asynchronous Advantage ActorCritic V2-twNXFplIAP8.mp4
02:54
09. A3C Asynchronous Advantage Actor-Critic, Parallel Training.html
09. M3 L5 09 A3C Asynchronous Advantage ActorCritic Parallel Training V2-kKRbAKhjACo.mp4
01:56
10. A3C Asynchronous Advantage Actor-Critic, Off- vs On-policy.html
10. M3 L5 10 A3C Asynchronous Advantage ActorCritic Offpolicy Vs Onpolicy V1-AZiy5R0DESU.mp4
04:45
11. A2C Advantage Actor-Critic.html
11. M3 L5 11 A2C Advantage ActorCritic V2-fIWe3xA97DA.mp4
01:52
12. A2C Code Walk-through.html
12. A2c Export V1-LiUBJje2N0c.mp4
14:07
13. GAE Generalized Advantage Estimation.html
13. M3 L5 13 GAE Generalized Advantage Estimation V2-oLFocWp0dt0.mp4
03:42
14. DDPG Deep Deterministic Policy Gradient, Continuous Actions.html
14. M3 L5 14 DDPG Deep Deterministic Policy Gradient Continuous Actionspace V1-0NVOPIyrr98.mp4
03:40
15. DDPG Deep Deterministic Policy Gradient, Soft Updates.html
15. M3 L5 15 DDPG Deep Deterministic Policy Gradient Soft Updates V1-RT-HDnAVe9o.mp4
02:12
16. DDPG Code Walk-through.html
16. DDPG Export V1-08V9r3NgFSE.mp4
11:37
17. M3L517 Summary HS 1 V1-rRuiMhijw_s.mp4
01:28
17. Summary.html
index.html
01. Introduction.html
01. M3L601 Introduction HS V1-Nn1PblFSnP8.mp4
00:41
02. High Frequency Trading.html
02. M3L602 High Frequency Trading HFT RENDER V2-oM1zZdZ-8fE.mp4
02:23
03. Challenges of Supervised Learning.html
03. M3L603 Challenges Of Supervised Learning RENDER V1-_hAPnbDtteM.mp4
02:50
04. Advantages of RL for Trading.html
04. M3L04 Advantages Of Reinforcemnt Learning For Trading RENDER V1-rqHL4BZocI8.mp4
02:33
05. M3L606 Optimization SC PT1 V1-6NiRtFyA2DU.mp4
00:59
05. Optimal Liquidation Problem - Part 1 - Introduction.html
06. M3L607 Optimization SC PT2 V1-JzL66ZbTC9U.mp4
01:53
06. Optimal Liquidation Problem - Part 2 - Market Impact.html
07. M3L608 Optimization SC PT3 V1-3pN77gMg788.mp4
02:15
07. Optimal Liquidation Problem - Part 3 - Price Model.html
08. M3L609 Optimization SC PT4 V2-N2LP-wg1jEI.mp4
05:08
08. Optimal Liquidation Problem - Part 4 - Expected Shortfall.html
09. Almgren and Chriss Model.html
09. M3L610 Almgren And Chriss Model SC V1-rokcEQ4LXbU.mp4
04:45
10. M3L611 Trading Lists SC V1-cGT-ADpHR74.mp4
05:38
10. Trading Lists.html
11. M3L612 The Efficient Frontier V1-EwM7Ksbs-ds.mp4
04:46
11. The Efficient Frontier.html
12. DRL for Optimal Execution of Portfolio Transactions.html
index.html
01. Unity ML-Agents.html
02. The Environment - Introduction.html
03. The Environment - Real World.html
04. The Environment - Explore.html
04. Untitled-i2gVvXgOMnc.mp4
00:32
05. Project Instructions.html
06. Benchmark Implementation.html
07. Not sure where to start.html
08. General Advice.html
09. Collaborate!.html
10. Workspace.html
11. (Optional) Challenge Crawl.html
Project Description - Continuous Control.html
Project Rubric - Continuous Control.html
index.html
- img
- 849-1234251683jkyt.zip
- 2018-02-27-16-05-37.zip
- crawler.zip
- idea-2579308-640.zip
- image8.zip
- output.zip
- pic3.zip
- reacher.zip
- screen-shot-2018-05-02-at-4.56.45-pm.zip
- screen-shot-2018-05-03-at-9.10.50-am.zip
- screen-shot-2018-07-11-at-11.19.56-am.zip
- udacitylogo.zip
- unity-wide.zip
- unknown.zip
01. Get Opportunities with LinkedIn.html
01. Why Network-exjEm9Paszk.mp4
02:00
02. Meet Chris-0ccflD9x5WU.mp4
03:00
02. Use Your Story to Stand Out.html
03. Elevator Pitch-S-nAHPrkQrQ.mp4
02:04
03. Why Use an Elevator Pitch.html
04. Create Your Elevator Pitch.html
04. Elevator Pitch-0QtgTG49E9I.mp4
01:08
04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4
00:50
05. Use Your Elevator Pitch on LinkedIn.html
06. Create Your Profile With SEO In Mind.html
07. Profile Essentials.html
08. Work Experiences Accomplishments.html
09. Build and Strengthen Your Network.html
10. Reaching Out on LinkedIn.html
11. Boost Your Visibility.html
12. Up Next.html
Project Description - Improve Your LinkedIn Profile.html
Project Rubric - Improve Your LinkedIn Profile.html
index.html
- img
- profile-pics.zip
- redacted-linkedinresults.zip
- screen-shot-2018-02-23-at-5.00.25-pm.zip
- screen-shot-2018-02-23-at-5.11.40-pm.zip
- screen-shot-2018-09-21-at-11.36.43-am.zip
- screen-shot-2018-09-21-at-12.02.03-pm.zip
- speaking.zip
- media
- unnamed-project-desc-0.zip
- unnamed-project-desc-1.zip
01. Study Plan.html
index.html
- img
- udacitylogo.zip
01. Introducing Chhavi.html
01. M4 L2 C01 Introducing Chhavi HS V1-imuw8tOMed4.mp4
00:18
02. Introduction to Multi-Agent Systems.html
02. M4 L2 C02 Introduction To Multi Agent Systems V1-ra-w63kzq6I.mp4
01:13
03. M4 L2 C03 Motivation For Multi Agent Systems V1-i_s22qgQYL4.mp4
01:22
03. Motivation for Multi-Agent Systems.html
04. Applications of Multi-Agent Systems.html
04. M4 L2 C04 Applications Of Multi Agent Systems V2-fw0G_gSDm6Q.mp4
01:02
05. Benefits of Multi-Agent Systems.html
05. M4 L2 C05 Benefits Of Multi Agent Systems V2-NXDv9cEZTaw.mp4
01:23
06. M4 L2 C06 Markov Games 2 V1-Y9qq4Jqnwls.mp4
02:22
06. Markov Games.html
07. Markov Games.html
08. Approaches to MARL.html
08. M4 L2 C07 Approaches To MARL V1-uKV9AJykin0.mp4
01:54
09. Cooperation, Competition, Mixed Environments.html
09. M4 L2 C08 Cooperation Competition Mixed Environments A V1-vx6PIH5_oFg.mp4
01:24
10. M4 L2 C09 Paper Description Part I HSAEG V1-nRKrQamUISs.mp4
00:35
10. Research Topics.html
11. M4 L2 C10a Paper Description Part II V1-Ks9-TeCg3Fs.mp4
00:58
11. Paper Description, Part 1.html
12. M4 L2 C10b Paper Description Part II V2-4hFAhtLJR5U.mp4
01:21
12. Paper Description, Part 2.html
13. M4 L2 C11 Summary HS V1-yGPHGYHqjq8.mp4
01:08
13. Summary.html
14. Lab Instructions.html
15. MADDPG - Lab.html
index.html
01. AlphaZero Preview.html
01. Alpha Zero Preview-Zzc1XJ1aJ-4.mp4
01:51
02. Zero-Sum Game.html
02. Zero-Sum Game-uPw1dHVqdXQ.mp4
03:55
03. Monte Carlo Tree Search 1 - Random Sampling.html
03. Monte Carlo Tree Search 1 - Random Sampling-wn2B3j_Qz6E.mp4
04:58
04. Monte Carlo Tree Search 2 - Expansion and Back-propagation.html
04. Monte Carlo Tree Search 2 - Expansion and Back-propagation-H34Wtk1iNDY.mp4
05:04
05. AlphaZero 1 Guided Tree Search.html
05. AlphaZero 1 Guided Tree Search-LinuRy47xbw.mp4
06:11
06. AlphaZero 2 Self-Play Training.html
06. Alpha Zero 2 Self-Play Training-wl1qfPXqRuQ.mp4
04:10
07. Alphazero python classes walkthrough-hKnBQvtJ_zQ.mp4
12:13
07. TicTacToe using AlphaZero - notebook walkthrough-uUFuBscf98I.mp4
17:14
07. TicTacToe using AlphaZero - walkthrough.html
08. TicTacToe using AlphaZero - Workspace.html
09. Advanced TicTacToe using AlphaZero.html
09. Alphazero advanced tictactoe walkthrough-MOIk_BbCjRw.mp4
07:10
index.html
01. Unity ML-Agents.html
02. The Environment - Introduction.html
03. The Environment - Explore.html
03. Untitled-kxDvrkg8ep0.mp4
00:23
04. Project Instructions.html
05. Benchmark Implementation.html
06. Collaborate!.html
07. Workspace.html
08. (Optional) Challenge Play Soccer.html
Project Description - Collaboration and Competition.html
Project Rubric - Collaboration and Competition.html
index.html
- img
- 849-1234251683jkyt.zip
- 2018-02-27-16-05-37.zip
- screen-shot-2018-08-16-at-4.37.07-pm.zip
- soccer.zip
- tennis.zip
- unity-wide.zip
- we-can-do-it-poster-1393770492mjo.zip
01. Introduction.html
01. Introduction-ek2PD9RDrWw.mp4
00:42
02. OpenAI Gym FrozenLakeEnv.html
03. Your Workspace.html
04. Another Gridworld Example.html
04. Another Gridworld Example-n9SbomnLb-U.mp4
01:23
05. An Iterative Method, Part 1.html
05. An Iterative Method-AX-hG3KvwzY.mp4
05:51
06. An Iterative Method, Part 2.html
07. Quiz An Iterative Method.html
08. Iterative Policy Evaluation.html
08. Iterative Policy Evaluation-eDXIL_oOJHI.mp4
04:50
09. Implementation.html
10. Mini Project DP (Parts 0 and 1).html
11. Action Values.html
12. Implementation.html
13. Mini Project DP (Part 2).html
14. Policy Improvement.html
14. Policy Improvement-4_adUEK0IHg.mp4
05:59
15. Implementation.html
16. Mini Project DP (Part 3).html
17. Policy Iteration.html
17. Policy Iteration-gqv7o1kBDc0.mp4
01:29
18. Implementation.html
19. Mini Project DP (Part 4).html
20. Truncated Policy Iteration.html
20. Truncated Policy Iteration-a-RvCxlPMho.mp4
02:28
21. Implementation.html
22. Mini Project DP (Part 5).html
23. Value Iteration.html
23. Value Iteration-XNeQn8N36y8.mp4
02:55
24. Implementation.html
25. Mini Project DP (Part 6).html
26. Check Your Understanding.html
27. Summary.html
index.html
- img
- actionvalue.zip
- est-action.zip
- frozen-lake-6.zip
- improve.zip
- iteration.zip
- policy-eval.zip
- screen-shot-2017-09-26-at-2.18.38-pm.zip
- screen-shot-2017-09-26-at-4.22.09-pm.zip
- screen-shot-2017-09-26-at-11.03.16-pm.zip
- screen-shot-2017-10-02-at-10.41.44-am.zip
- screen-shot-2017-12-17-at-9.41.03-am.zip
- statevalue.zip
- truncated-eval.zip
- truncated-iter.zip
- value-iteration.zip
01. Introducing Luis.html
02. Why Neural Networks.html
02. Why Neural Networks-zAkzOZntK6Y.mp4
00:46
03. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
02:09
03. Combinando modelos-Boy3zHVrWB4.mp4
03:47
03. Layers-pg99FkXYK0M.mp4
02:08
03. Multiclass Classification-uNTtvxwfox0.mp4
01:19
03. Neural Network Architecture.html
04. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
04:19
04. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
01:20
04. Feedforward.html
05. Backpropagation.html
05. Backpropagation V2-1SmY3TZTyUk.mp4
05:12
05. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
02:20
05. Chain Rule-YAhIBOnbt54.mp4
01:14
05. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
04:37
06. Training Optimization.html
06. Training Optimization-UiGKhx9pUYc.mp4
00:27
07. Testing.html
07. Testing-EeBZpb-PSac.mp4
01:42
08. Overfitting and Underfitting.html
08. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
05:07
09. Early Stopping.html
09. Model Complexity Graph-NnS0FJyVcDQ.mp4
03:40
10. DL 53 Q Regularization-KxROxcRsHL8.mp4
00:52
10. Regularization.html
11. Regularization 2.html
11. Regularization-ndYnUrx8xvs.mp4
06:00
12. Dropout.html
12. Dropout-Ty6K6YiGdBs.mp4
03:08
13. Local Minima.html
13. Local Minima-gF_sW_nY-xw.mp4
00:42
14. Vanishing Gradient.html
14. Vanishing Gradient-W_JJm_5syFw.mp4
01:04
15. Other Activation Functions.html
15. Other Activation Functions-kA-1vUt6cvQ.mp4
01:49
16. Batch vs Stochastic Gradient Descent.html
16. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
03:04
17. Learning Rate Decay.html
17. Learning Rate-TwJ8aSZoh2U.mp4
00:43
18. Random Restart.html
18. Random Restart-idyBBCzXiqg.mp4
00:17
19. Momentum.html
19. Momentum-r-rYz_PEWC8.mp4
01:46
index.html
- img
- luis-circle.zip
- regularization-quiz.zip
- sigmoid-derivative.zip
01. Introducing Cezanne.html
02. 03 Data And Lesson Outline RENDER V2-jPr-5aZA6NE.mp4
01:04
02. Lesson Outline and Data.html
03. CNN Architecture, VGG-16.html
04. Convolutional Layers.html
04. Convolutional Layers (Part 2)-LX-yVob3c28.mp4
07:51
05. Defining Layers in PyTorch.html
06. Notebook Visualizing a Convolutional Layer.html
07. Pooling, VGG-16 Architecture.html
08. Pooling Layers.html
08. Pooling Layers-OkkIZNs7Cyc.mp4
04:14
09. Notebook Visualizing a Pooling Layer.html
10. Fully-Connected Layers, VGG-16.html
11. Notebook Visualizing FashionMNIST.html
12. Training in PyTorch.html
13. Notebook Fashion MNIST Training Exercise.html
14. Notebook FashionMNIST, Solution 1.html
15. Dropout-Ty6K6YiGdBs.mp4
03:08
15. Review Dropout.html
15.-r-rYz_PEWC8.mp4
01:46
16. Notebook FashionMNIST, Solution 2.html
17. 04 Feature Visualization V1 RENDER V2-xwGa7RFg1EQ.mp4
01:46
17. Feature Visualization.html
18. 05 Feature Maps V1RENDER V3-oRhsJHHWtu8.mp4
01:09
18. Feature Maps.html
19. 06 First Convolutional Layer T1 V1 RENDER V2-hIHDMWVSfsM.mp4
02:05
19. First Convolutional Layer.html
20. Visualizing CNNs (Part 2).html
21. 10 Visualizing Activations V1 RENDER V2-CJLNTOXqt3I.mp4
00:54
21. Visualizing Activations.html
22. Notebook Feature Viz for FashionMNIST.html
23. Notebook Visualize Your Net Layers.html
24. Last Feature Vector and t-SNE.html
25. Occlusion, Saliency, and Guided Backpropagation.html
26. 20 Summary Of Feature Viz V2 RENDER V2-r2LBoEkXskU.mp4
01:05
26. Summary of Feature Viz.html
index.html
- img
- alexis.zip
- cezanne-circle.zip
- diagonal-line-1.zip
- diagonal-line-2.zip
- embedding.zip
- grid-layer-1.zip
- layer-1-grid.zip
- screen-shot-2016-11-24-at-12.08.11-pm.zip
- screen-shot-2016-11-24-at-12.09.02-pm.zip
- screen-shot-2016-11-24-at-12.09.24-pm.zip
- screen-shot-2018-04-06-at-4.54.39-pm.zip
- screen-shot-2018-04-23-at-8.35.17-pm.zip
- screen-shot-2018-04-23-at-8.35.25-pm.zip
- screen-shot-2018-04-24-at-4.49.51-pm.zip
- screen-shot-2018-04-24-at-5.08.30-pm.zip
- screen-shot-2018-04-24-at-5.08.36-pm.zip
- screen-shot-2018-04-24-at-5.47.43-pm.zip
- screen-shot-2018-04-24-at-12.35.07-pm.zip
- screen-shot-2018-04-24-at-12.47.51-pm.zip
- screen-shot-2018-04-24-at-12.58.16-pm.zip
- t-sne-mnist.zip
- vgg-16.zip
01. Introducing Mat.html
02. Introducing PyTorch.html
03. Part 1 V2-n4mbZYIfKb4.mp4
07:32
03. PyTorch Tensors.html
04. Defining Networks.html
04. Py Part 2 V1-u50_ZyKqt8g.mp4
17:17
05. Py Part 3 V2-u8hDj5aJK6I.mp4
13:09
05. Training Networks.html
06. Fashion-MNIST Exercise.html
06. PyTorch - Part 4-AEJV_RKZ7VU.mp4
01:25
07. Inference Validation.html
07. Py Part 5 V2-coBbbrGZXI0.mp4
13:02
08. Py Part 6 V1-HiTih59dCWQ.mp4
06:09
08. Saving and Loading Trained Networks.html
09. Loading Data Sets with Torchvision.html
09. PyTorch - Part 7-hFu7GTfRWks.mp4
07:04
10. Py Part 8 V1-3eqn5sgCOsY.mp4
09:57
10. Transfer Learning.html
index.html
- img
- mat-leonard-circle.zip
01. Overview.html
02. Create an AWS Account.html
03. Get Access to GPU Instances.html
04. Apply Credits.html
05. Launch an Instance.html
06. Login to the Instance.html
07. Test the Instance.html
index.html
- img
- aws-add-sec-group.zip
- aws-create-account.zip
- aws-inst-stats.zip
- edit-security-group.zip
- launch.zip
- launch-instance.zip
- p2xlarge-limit-request.zip
- p2-limit-increase.zip
- review-and-launch.zip
- screen-shot-2017-06-13-at-12.58.03-pm.zip
- screen-shot-2017-11-26-at-9.38.24-am.zip
- screen-shot-2017-11-26-at-9.55.20-am.zip
- screen-shot-2017-11-26-at-10.30.15-am.zip
- screen-shot-2018-01-08-at-5.37.22-am.zip
- screen-shot-2018-01-08-at-5.38.03-am.zip
- stop.zip
- ud272-l2-16-10-aws-account.zip
01. Overview.html
02. Introduction to Workspaces.html
03. Workspaces Best Practices.html
index.html
- img
- jupyter-logo.zip
- workspaces-jupyter.zip
- workspaces-menu.zip
- workspaces-new.zip
- workspaces-notebook.zip
- workspaces-submit.zip
- workspaces-terminal.zip
01. Introduction.html
01. Introduction-ahoiVrq4qAk.mp4
00:58
02. Lesson Overview.html
02. Lesson Overview C++-lR3PH3bL-9U.mp4
01:08
02. Nd113 C3 L1 04 L Lesson Overview 2 V1-DjT2E23xhj8.mp4
00:49
03. Elecia White.html
04. Why C++.html
04. Why C++-_t4ZvwfnuCA.mp4
01:43
05. Python and C++ Comparison.html
06. Static Vs Dynamic Typing-D7v6iIAORkE.mp4
01:47
06. Static vs Dynamic Typing.html
07. C++ - A Statically Typed Language.html
08. Basic Data Types.html
09. Floating versus Double [demonstration].html
10. Doubles Are Bigger-uhwTWgmM2iY.mp4
00:52
10. Doubles are Bigger.html
11. Common Errors and Error Messages.html
12. C++ Functions.html
13. Anatomy of a Function.html
14. Multiple Outputs.html
15. Two Functions Same Name.html
15. Two Functions Same Name-0ZF649G58l4.mp4
00:45
15. Two Functions Same Name-9SgmzOfBmRU.mp4
01:46
16. Function Signatures 1.html
16. Function Signatures 1-T6kQ_4w98IQ.mp4
01:48
17. Function Signatures 2.html
17. Function Signatures 2-Sx4AWTmXl2U.mp4
01:07
17. Function Signatures 3 V1-U3QAFb3AS1M.mp4
00:16
18. If and Boolean Logic.html
19. While and For Loops.html
20. Switch Statement.html
21. Libraries.html
22. Forge on!.html
22. Nd113 C Basics Last Video V1-dtu-RXovl0U.mp4
00:20
index.html
- img
- copy-of-template-1.zip
- copy-of-template-2.zip
- cover.zip
- embeddedlogo-04.zip
- for.zip
- my-drawing.zip
- switch.zip
- while.zip
01. C++ Vectors.html
02. Namespaces.html
03. Python Lists vs. C++ Vectors.html
04. Initializing Vector Values.html
05. Vector Methods.html
06. Vectors and For Loops.html
07. Math and Vectors.html
08. 1D Vector Playground.html
09. 2D Vectors.html
10. 2D Vectors and For Loops.html
11. 2D Vector Playground.html
12. Next Lesson.html
index.html
- img
- copy-of-template.zip
- vectors.zip
01. Introduction To Compilation-dyzGEB8YDGg.mp4
03:04
01. Introduction to Compilation.html
02. Running Code Locally.html
03. C++ Versions.html
04. Structuring Functions and File Organization.html
05. Input and Output.html
06. Reading in Text Files.html
07. Outputting to Text Files.html
08. Exercises.html
index.html
01. Introduction.html
01. Introduction-4xHI5LFX-cQ.mp4
00:39
02. Python vs. C++.html
03. Why Use Object Oriented Programming-G2KzZfNu9Ak.mp4
01:30
03. Why use Object Oriented Programming.html
04. Using a Class in C++ [Demo].html
05. Explanation of the Main.cpp File.html
06. Practice Using a Class.html
07. Review Anatomy of a Class.html
08. Other Facets of C++ Classes.html
09. Private and Public.html
10. Header Files.html
11. Inclusion Guards.html
12. Implement a Class.html
13. Class Variables.html
14. Class Function Declarations.html
15. Constructor Functions.html
16. Set and Get Functions.html
17. Matrix Functions.html
18. Use an Inclusion Guard.html
19. Instantiate an Object.html
20. Running your Program Locally.html
index.html
01. Course Introduction.html
01. Course Introduction-Lwc5oYApdUM.mp4
00:43
02. C Opt 01 L V2-Kdx1_BI5ddc.mp4
02:10
02. Empathize with the Computer.html
03. 02 L Intro To Comp HW V1 RENDER V1-WDMGkq9mkB8.mp4
03:40
03. Intro to Computer Hardware.html
04. Embedded Terminal Explanation.html
04. Nd113 Embedded Terminal V1-Bhl5JQ_N9V8.mp4
07:54
05. Demo Machine Code.html
06. Assembly Language.html
07. 03 L Binary V1 RENDER V1-K6CpHxnhc2s.mp4
04:40
07. Binary.html
08. Demo Binary.html
09. Demo Binary Floats.html
10. 04 L C And RAM V1 RENDER V1-60jEbKV1UOI.mp4
02:36
10. Memory and the CPU.html
11. Demo Stack vs Heap.html
12. C Opt 05 L V3-rTtZVyWxYG8.mp4
01:28
12. Outro.html
index.html
- img
- cli.zip
- emptyterminal.zip
- files.zip
- menu.zip
- menuopen.zip
- texteditor.zip
- untitled-drawing.zip
01. Introduction.html
02. Software Development and Optimization.html
03. Optimization Techniques.html
04. Dead Code.html
05. Exercise Remove Dead Code.html
06. If Statements.html
07. Exercise If Statements.html
08. For Loops.html
09. Exercise For Loops.html
10. Intermediate Variables.html
11. Exercise Intermediate Variables.html
12. Vector Storage.html
13. Exercise Vector Storage.html
14. References.html
15. Exercise References.html
16. Nd113 Story 1 V1-lIe2zso8A-w.mp4
02:24
16. Sebastian's Synchronization Story.html
17. Static Keyword.html
18. Exercise Static Keyword.html
19. Nd113 C L2 01 V1-h_P7ceb5ido.mp4
00:31
19. Speed Challenge.html
index.html
More details
User Reviews
Rating
average 0
Focused display
Category

Udacity
View courses UdacityUdacity, Inc. is an American for-profit educational organization founded by Sebastian Thrun, David Stavens, and Mike Sokolsky offering massive open online courses. According to Thrun, the origin of the name Udacity comes from the company's desire to be "audacious for you, the student".
- language english
- Training sessions 246
- duration 11:48:30
- English subtitles has
- Release Date 2023/03/09