Companies Home Search Profile

Nanodegree Program - Become a Deep Reinforcement Learning Expert

Focused View

11:48:30

125 View
  • 01. Welcome To DRLND-i1-l0n1ntes.mp4
    02:07
  • 01. Welcome to the Deep Reinforcement Learning Nanodegree.html
  • 02. RL In The Real World-IGlAyGbOTHo.mp4
    01:16
  • 02. RL in the Real World.html
  • 03. Overview of the ND Program.html
  • 04. Projects You Will Build.html
  • 04. Unity Machine Learning Agents-jC12h4UAxqs.mp4
    02:34
  • 05. Play Tennis!.html
  • 06. Deadline Policy.html
  • 07. Udacity Support.html
  • 08. Community Guidelines.html
  • index.html
    • img
    • banana.zip
    • bipedal-walker.zip
    • dumb-soccer.zip
    • game-example.zip
    • lunar-lander.zip
    • mjg2mzcyma.zip
    • mountain-car-cts.zip
    • output.zip
    • reacher.zip
    • screen-shot-2018-06-12-at-5.07.10-pm.zip
    • screen-shot-2018-07-06-at-11.33.53-am.zip
    • soccer.zip
  • 01. What It Takes.html
  • 02. Reviews.html
  • 03. Knowledge.html
  • 04. Student Hub.html
  • index.html
    • img
    • image4.zip
    • image8.zip
    • screen-shot-2018-11-07-at-9.55.40-pm.zip
    • screen-shot-2018-11-07-at-9.59.16-pm.zip
    • screen-shot-2018-11-07-at-10.23.07-pm.zip
    • screen-shot-2018-11-09-at-6.28.07-pm.zip
  • 01. FAQ.html
  • 02. Support.html
  • index.html
    • img
    • screen-shot-2018-11-09-at-7.38.47-pm.zip
    • screen-shot-2018-11-09-at-7.48.22-pm.zip
    • screen-shot-2018-11-09-at-7.49.34-pm.zip
    • screen-shot-2018-11-09-at-7.49.50-pm.zip
  • 01. Learning Plan.html
  • 02. Reference Guide.html
  • 03. OpenAI Gym.html
  • 04. GitHub Repository.html
  • 05. AWS Credits.html
  • 06. Student Resources.html
  • index.html
    • img
    • 42135602-b0335606-7d12-11e8-8689-dd1cf9fa11a9.zip
    • download.zip
    • grokking-deeprl.zip
    • image4.zip
    • openaigym-gif.zip
    • paper-notes.zip
    • udacitylogo.zip
    • unknown.zip
  • 01. Introduction.html
  • 01. Introduction-6jSFl5kxIBs.mp4
    01:32
  • 02. Applications.html
  • 02. Applications-CV6B84mKRNM.mp4
    02:16
  • 03. The Setting.html
  • 03. The Setting-nh8Gwdu19nc.mp4
    04:58
  • 04. Resources.html
  • 04. Resources-_YPqfAnCqtk.mp4
    01:22
  • index.html
  • 01. Introduction.html
  • 01. Introduction-X_9l_ZqXXBA.mp4
    00:31
  • 02. The Setting, Revisited.html
  • 02. The Setting, Revisited-V6Q1uF8a6kA.mp4
    04:07
  • 03. Episodic vs. Continuing Tasks.html
  • 03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4
    01:59
  • 04. Quiz Test Your Intuition.html
  • 05. Quiz Episodic or Continuing.html
  • 06. The Reward Hypothesis.html
  • 06. The Reward Hypothesis-uAqNwgZ49JE.mp4
    02:20
  • 07. Goals and Rewards, Part 1.html
  • 07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4
    02:16
  • 08. Goals and Rewards, Part 2.html
  • 08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4
    03:55
  • 09. Quiz Goals and Rewards.html
  • 10. Cumulative Reward.html
  • 10. Cumulative Reward-ysriH65lV9o.mp4
    03:51
  • 11. Discounted Return.html
  • 11. Discounted Return-opXGNPwwn7g.mp4
    05:09
  • 12. Quiz Pole-Balancing.html
  • 13. MDPs, Part 1.html
  • 13. MDPs, Part 1-NBWbluSbxPg.mp4
    02:46
  • 14. MDPs, Part 2.html
  • 14. MDPs, Part 2-CUTtQvxKkNw.mp4
    05:08
  • 15. Quiz One-Step Dynamics, Part 1.html
  • 16. Quiz One-Step Dynamics, Part 2.html
  • 17. MDPs, Part 3.html
  • 17. MDPs, Part 3-UlXHFbla3QI.mp4
    02:08
  • 18. Finite MDPs.html
  • 19. Summary.html
  • index.html
    • img
    • 1omsg2-mkguagky1c64uflw.zip
    • article-2278590-1792e332000005dc-394-634x615.zip
    • backgammonboard.svg.zip
    • chess-game.zip
    • go.zip
    • index.zip
    • maze.zip
    • pup.zip
    • screen-shot-2017-09-20-at-12.02.06-pm.zip
    • screen-shot-2017-09-21-at-3.08.03-pm.zip
    • screen-shot-2017-09-21-at-3.25.10-pm.zip
    • screen-shot-2017-09-21-at-3.46.12-pm.zip
    • screen-shot-2017-09-21-at-4.34.08-pm.zip
    • screen-shot-2017-09-21-at-12.20.30-pm.zip
    • screen-shot-2017-09-21-at-12.20.50-pm.zip
  • 01. Introduction.html
  • 01. Introduction-9Wyf5Zsska8.mp4
    00:53
  • 02. Policies.html
  • 02. Policies-hc3LrvaC13U.mp4
    03:24
  • 03. Quiz Interpret the Policy.html
  • 04. Gridworld Example.html
  • 04. Gridworld Example-XeHBmPFqTsE.mp4
    01:38
  • 05. State-Value Functions.html
  • 05. State-Value Functions-llakAjwox_8.mp4
    03:16
  • 06. Bellman Equations.html
  • 06. Bellman Equations-UgIaDMvSdUo.mp4
    02:38
  • 07. Quiz State-Value Functions.html
  • 08. Optimality.html
  • 08. Optimality-j231aRV74QM.mp4
    03:17
  • 09. Action-Value Functions.html
  • 09. Action-Value Functions-KJLaRfOOPGA.mp4
    03:22
  • 10. Quiz Action-Value Functions.html
  • 11. Optimal Policies.html
  • 11. Optimal Policies-2rguYpVyCto.mp4
    02:45
  • 12. Quiz Optimal Policies.html
  • 13. Summary.html
  • index.html
    • img
    • screen-shot-2017-08-31-at-3.27.10-pm.zip
    • screen-shot-2017-09-21-at-12.20.30-pm.zip
    • screen-shot-2017-09-24-at-4.28.04-pm.zip
    • screen-shot-2017-09-25-at-5.51.40-pm.zip
    • screen-shot-2017-09-25-at-6.02.37-pm.zip
    • screen-shot-2017-09-25-at-9.18.00-pm.zip
    • screen-shot-2017-09-25-at-11.35.38-am.zip
  • 01. L601 Intro RENDER V2-3H5x0lstvmo.mp4
    00:56
  • 01. Review.html
  • 02. Gridworld Example.html
  • 02. L602 Gridworld Example RENDER V2-2-Lwibg_IfmrA.mp4
    02:18
  • 03. L603 Monte Carlo Methods RENDER V3-2-titaMCRl224.mp4
    04:56
  • 03. Monte Carlo Methods.html
  • 04. L604 MC Prediction Part 1RENDER V2-6ts9gdIS6vg.mp4
    03:09
  • 04. MC Prediction - Part 1.html
  • 05. L605 MC Prediction Part 2 RENDER V3-jR49ZyKuJ98.mp4
    01:20
  • 05. MC Prediction - Part 2.html
  • 06. L606 MC Prediction Part 3 RENDERv1 V4-9LP6uXdmWxQ.mp4
    01:30
  • 06. MC Prediction - Part 3.html
  • 07. OpenAI Gym BlackJackEnv.html
  • 08. Workspace - Introduction.html
  • 09. Coding Exercise.html
  • 09. MC Prediction - Solution Walkthrough-Pwiqk7Pncgc.mp4
    07:18
  • 10. Workspace.html
  • 11. Greedy Policies.html
  • 11. L611 Greedy Policies RENDER V4-DH6c-aODMLU.mp4
    02:01
  • 12. Epsilon-Greedy Policies.html
  • 12. L612 Epsilon Greedy Policies RENDER V4-PxJMtlR06MY.mp4
    03:35
  • 13. MC Control.html
  • 14. Exploration vs. Exploitation.html
  • 15. Incremental Mean.html
  • 15. L615 Incremental Mean RENDER V4-h-8MB7V1LiE.mp4
    02:29
  • 16. Constant-alpha.html
  • 16. L617 Constant Alpha Edits RENDER V1-LetHoOtNdJc.mp4
    00:51
  • 16. MC Control Constant-alpha-QFV1nI9Zpoo.mp4
    02:32
  • 17. Coding Exercise.html
  • 17. M1 L6 S2 V1-6E_3NJcoxmU.mp4
    06:44
  • 18. Workspace.html
  • 19. Summary.html
  • index.html
    • img
    • 2-card-21.zip
    • exploration-vs.-exploitation.zip
    • jupyter.zip
    • latex-image-1-copy.zip
    • screen-shot-2017-09-20-at-12.02.06-pm.zip
    • screen-shot-2017-09-25-at-11.35.38-am.zip
    • screen-shot-2017-10-04-at-4.58.58-pm.zip
    • screen-shot-2017-10-04-at-5.01.26-pm.zip
    • screen-shot-2017-10-05-at-3.55.40-pm.zip
    • screen-shot-2018-04-30-at-10.27.56-am.zip
    • screen-shot-2018-05-01-at-11.12.36-pm.zip
    • screen-shot-2018-05-04-at-2.49.48-pm.zip
    • screen-shot-2018-05-04-at-2.51.59-pm.zip
    • screen-shot-2018-05-04-at-3.14.47-pm.zip
    • screen-shot-2018-05-05-at-1.20.10-pm.zip
    • screen-shot-2018-05-10-at-6.10.16-pm.zip
  • 01. Introduction.html
  • 01. Introduction-yXErXQulI_o.mp4
    02:04
  • 02. Review MC Control Methods.html
  • 03. L602 Gridworld Example RENDER V2-2-Lwibg_IfmrA.mp4
    02:18
  • 03. Quiz MC Control Methods.html
  • 03. Quiz MC Control Methods-ZwIg6LDMyuo.mp4
    01:52
  • 04. TD Control Sarsa.html
  • 04. TD Control Sarsa Part 1-HYV0SP9wm7g.mp4
    02:24
  • 04. TD Control Sarsa Part 2-U_CV-UC9G2c.mp4
    01:40
  • 05. Quiz Sarsa.html
  • 06. TD Control Q-Learning.html
  • 06. TD Control Sarsamax-4DxoYuR7aZ4.mp4
    03:14
  • 07. Quiz Q-Learning.html
  • 08. TD Control Expected Sarsa.html
  • 08. TD Control Expected Sarsa-kEKupCyU0P0.mp4
    00:50
  • 09. Quiz Expected Sarsa.html
  • 10. TD Control Theory and Practice.html
  • 11. OpenAI Gym CliffWalkingEnv.html
  • 12. Workspace - Introduction.html
  • 13. Coding Exercise.html
  • 14. Workspace.html
  • 15. Analyzing Performance.html
  • 16. Quiz Check Your Understanding.html
  • 17. Summary.html
  • index.html
    • img
    • environment.zip
    • episode.zip
    • exploration-vs.-exploitation.zip
    • jupyter.zip
    • matengai-of-kuniga-coast-in-oki-island-shimane-pref600.zip
    • qtable2.zip
    • screen-shot-2017-10-17-at-11.02.44-am.zip
    • screen-shot-2017-12-17-at-12.49.34-pm.zip
    • screen-shot-2018-03-07-at-2.33.19-pm.zip
    • screen-shot-2018-03-07-at-2.43.07-pm.zip
    • screen-shot-2018-03-07-at-3.16.47-pm.zip
    • screen-shot-2018-03-07-at-3.53.08-pm.zip
    • screen-shot-2018-05-01-at-11.10.05-pm.zip
    • screen-shot-2018-05-04-at-6.14.28-pm.zip
    • screen-shot-2018-05-04-at-6.14.42-pm.zip
    • screen-shot-2018-05-04-at-6.14.56-pm.zip
    • screen-shot-2018-05-10-at-6.10.16-pm.zip
    • screen-shot-2018-05-24-at-11.45.52-am.zip
  • 01. Introduction.html
  • 02. Instructions.html
  • 03. Mini Project.html
  • index.html
    • img
    • new-tab.zip
    • open-agent-monitor-main.zip
    • open-terminal.zip
    • run-main.zip
    • screen-shot-2018-04-14-at-3.13.15-pm.zip
  • 01. Introducing Arpan.html
  • 02. Introduction-GPjK124RU5g.mp4
    04:40
  • 02. Lesson Overview.html
  • 03. Discrete vs. Continuous Spaces.html
  • 03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4
    04:40
  • 04. Quiz Space Representations.html
  • 05. Discretization.html
  • 05. Discretization-j2eZyUpy--E.mp4
    03:06
  • 06. Exercise Discretization.html
  • 07. Workspace Discretization.html
  • 08. Tile Coding.html
  • 08. Tile Coding-BRs7AnTZ_8k.mp4
    02:37
  • 09. Exercise Tile Coding.html
  • 10. Workspace Tile Coding.html
  • 11. Coarse Coding.html
  • 11. Coarse Coding-Uu1J5KLAfTU.mp4
    02:12
  • 12. Function Approximation.html
  • 12. Function Approximation-UTGWVY6jEdg.mp4
    02:56
  • 13. Linear Function Approximation.html
  • 13. Linear Function Approximation-OJ5wrB7o-pI.mp4
    04:57
  • 14. Kernel Functions.html
  • 14. Kernel Functions-RdkPVYyVOvU.mp4
    02:03
  • 15. Non-Linear Function Approximation.html
  • 15. Non-Linear Function Approximation-rITnmpD2mN8.mp4
    01:08
  • 16. Summary.html
  • 16. Summary-MTEBk43oByU.mp4
    01:07
  • index.html
    • img
    • arpan-headshot.zip
    • jupyter.zip
    • poker-hand-3-of-a-kind.zip
    • qtable.zip
    • screen-shot-2018-05-02-at-12.24.35-am.zip
    • screen-shot-2018-05-03-at-11.30.05-pm.zip
  • 01. Arpan Rollercoaster-Rf6cCYRqV58.mp4
    01:08
  • 01. Congratulations!.html
  • 02. What can you do now.html
  • index.html
    • img
    • dqn.zip
  • 01. Study Plan.html
  • 02. Deep RL for Robotics.html
  • 02. Deep RL in Robotics-IjG_IWJdb1w.mp4
    02:02
  • index.html
    • img
    • output.zip
    • udacitylogo.zip
  • 01. DQN Overview-WgiAvr7COR0.mp4
    01:14
  • 01. From RL to Deep RL.html
  • 01. From RL to Deep RL-7HLJ0uaR1F0.mp4
    01:54
  • 02. Deep Q-Networks.html
  • 02. Deep Q-Networks-GgtR_d1OB-M.mp4
    04:18
  • 03. Experience Replay.html
  • 03. Experience Replay-wX_-SZG-YMQ.mp4
    06:53
  • 04. Fixed Q-Targets.html
  • 04. Fixed Q-Targets-SWpyiEezfp4.mp4
    04:03
  • 05. Deep Q-Learning Algorithm.html
  • 05. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4
    03:08
  • 06. Coding Exercise.html
  • 07. Workspace.html
  • 08. Deep Q-Learning Improvements.html
  • 09. 10 Double DQN V2-PGCEMLujiGI.mp4
    02:56
  • 09. Double DQN.html
  • 10. 10 Prioritized Experience Replay V1-cN8z-7Ze9L8.mp4
    04:34
  • 10. Prioritized Experience Replay.html
  • 11. 10 Dueling DQN V2-zZeHbPs39Ls.mp4
    01:19
  • 11. Dueling DQN.html
  • 12. Rainbow.html
  • 13. Summary.html
  • 13. Summary-x6JggcDTcys.mp4
    00:49
  • index.html
    • img
    • dqn.zip
    • dueling-q-network.zip
    • jupyter.zip
    • rainbow-1445337690d8q.zip
    • screen-shot-2018-06-30-at-6.40.09-pm.zip
    • screen-shot-2018-06-30-at-7.03.40-pm.zip
    • sonic.zip
  • 01. 01 Introduction RENDER V2-dfeawuScC7k.mp4
    01:16
  • 01. Introduction.html
  • 02. 02 Welcome!-1oElWzRt-lU.mp4
    01:17
  • 02. 03 Transitioning-BvDvxw8e0CY.mp4
    01:18
  • 02. C++ for Robotics.html
  • 03. 03 CC API HSSC HS RENDER V3-a9-HdpCaYW4.mp4
    00:54
  • 03. CC++ API.html
  • 04. Catch Sample.html
  • 05. Udacity Workspace.html
  • 06. Fruit Sample.html
  • 07. Rover Sample.html
  • 08. Arm Sample.html
  • 09. 09 Jetson TX2 Edits V1-M26z7vTti_g.mp4
    01:14
  • 09. Jetson Overview-i56qM6NNW9A.mp4
    02:44
  • 09. Jetson TX2.html
  • 10. 10 Summary HS V3-cb1FGgZIitc.mp4
    00:37
  • 10. Summary.html
  • index.html
    • img
    • armenv.zip
    • fruit.zip
    • nv-rl-stack-diagram.zip
    • output.zip
    • rl-gazebo-fall.zip
  • 01. Unity ML-Agents.html
  • 02. The Environment - Introduction.html
  • 03. The Environment - Play.html
  • 04. Getting Started-ltz2GhFv04A.mp4
    00:23
  • 04. The Environment - Explore.html
  • 05. Project Instructions.html
  • 06. Benchmark Implementation.html
  • 07. Not sure where to start.html
  • 08. Collaborate!.html
  • 09. Workspace.html
  • 10. (Optional) Challenge Learning from Pixels.html
  • Project Description - Navigation.html
  • Project Rubric - Navigation.html
  • index.html
    • img
    • 849-1234251683jkyt.zip
    • 2018-02-27-16-05-37.zip
    • banana.zip
    • bananas-save.zip
    • idea-2579308-640.zip
    • screen-shot-2018-06-08-at-1.04.47-pm.zip
    • unity-wide.zip
  • 01. Opportunities in DRL.html
  • 02. Career Services-cuKecPpZ7PM.mp4
    02:11
  • 02. Meet the Careers Team.html
  • 03. Access Your Career Portal.html
  • 04. Your Udacity Professional Profile.html
  • index.html
    • img
    • get-hired-with-the-udacity-career-portal.zip
    • screen-shot-2017-10-27-at-1.49.58-pm.zip
    • screen-shot-2018-07-27-at-1.24.38-pm.zip
    • udacitylogo-copy.zip
  • 01. Prove Your Skills With GitHub.html
  • 02. Introduction.html
  • 02. Introduction-Vnj2VNQROtI.mp4
    00:54
  • 03. GitHub profile important items.html
  • 03. GitHub profile important items-prvPVTjVkwQ.mp4
    01:35
  • 04. Good GitHub repository.html
  • 04. Good GitHub repository-qBi8Q1EJdfQ.mp4
    01:10
  • 05. Interview with Art - Part 1.html
  • 05. Interview with Art - Part 1-ClLYamtaO-Q.mp4
    02:11
  • 06. Identify fixes for example bad profile.html
  • 06. Identify fixes for example bad profile-AF07y1oAim0.mp4
    00:12
  • 06. Identify fixes for example bad profile-ncFtwW5urHk.mp4
    00:51
  • 07. Quick Fixes #1.html
  • 07. Quick Fixes-Lb9e2KemR6I.mp4
    01:11
  • 08. Quick Fixes #2.html
  • 08. Quick Fixes #2-It6AEuSDQw0.mp4
    00:13
  • 09. Writing READMEs with Walter.html
  • 09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4
    00:40
  • 10. Interview with Art - Part 2.html
  • 10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4
    01:19
  • 11. Commit messages best practices.html
  • 12. Reflect on your commit messages.html
  • 12. Reflect on your commit messages-_0AHmKkfjTo.mp4
    00:16
  • 13. Participating in open source projects.html
  • 13. Participating in open source projects-OxL-gMTizUA.mp4
    00:15
  • 14. Interview with Art - Part 3.html
  • 14. Interview with Art - Part 3-M6PKr3S1rPg.mp4
    02:30
  • 15. Participating in open source projects 2.html
  • 15. Participating in open source projects 2-elZCLxVvJrY.mp4
    00:54
  • 16. Starring interesting repositories.html
  • 16. Starring interesting repositories-U3FUxkm1MxI.mp4
    00:13
  • 16. Starring interesting repositories-ZwMY5rAAd7Q.mp4
    00:19
  • 17. Next Steps.html
  • Project Description - Optimize Your GitHub Profile.html
  • Project Rubric - Optimize Your GitHub Profile.html
  • index.html
    • img
    • 6485174133.zip
    • 6499079068.zip
    • 6509638772.zip
    • 6551597473.zip
    • mat-leonard-circle.zip
  • 01. Study Plan.html
  • index.html
    • img
    • udacitylogo.zip
  • 01. M3 L2 C01 V2-mMnhi8yzwKk.mp4
    02:38
  • 01. Policy-Based Methods.html
  • 02. M3 L2 C02 V1-v8tGjlc2aG4.mp4
    01:38
  • 02. Policy Function Approximation.html
  • 03. More on the Policy.html
  • 04. Hill Climbing.html
  • 04. M3 L2 C04 V3-5E86a0OyVyI.mp4
    03:48
  • 05. Hill Climbing Pseudocode.html
  • 05. M3 L2 C05 V1-0XzzqIXyax0.mp4
    01:10
  • 06. Beyond Hill Climbing.html
  • 06. M2L3 04 V1-QicxmyE5vTo.mp4
    03:53
  • 07. M3 L2 C07 V3-2poDljPvY58.mp4
    01:36
  • 07. More Black-Box Optimization.html
  • 08. Coding Exercise.html
  • 09. Workspace.html
  • 10. OpenAI Request for Research.html
  • 11. M2L3 02 V2-ToS8vXGdODE.mp4
    06:37
  • 11. Why Policy-Based Methods.html
  • 12. Summary.html
  • index.html
    • img
    • cartpole.zip
    • jupyter.zip
    • screen-shot-2018-06-26-at-11.53.35-am.zip
    • screen-shot-2018-06-28-at-6.46.54-pm.zip
    • screen-shot-2018-07-01-at-10.54.05-am.zip
    • screen-shot-2018-07-01-at-11.19.22-am.zip
    • screen-shot-2018-07-01-at-11.28.57-am.zip
  • 01. M3L3 C01 V3-ZEhQRASU5O4.mp4
    03:34
  • 01. What are Policy Gradient Methods.html
  • 02. M3L3 C02 V6-zoOgRoaxGiU.mp4
    03:07
  • 02. The Big Picture.html
  • 03. Connections to Supervised Learning.html
  • 03. M3L3 C03 V2-dJz_p4FKE-g.mp4
    02:59
  • 04. M3L3 C04 V2-St9ftvMQ_ks.mp4
    02:23
  • 04. Problem Setup.html
  • 05. M3L3 C05 V2-o6CI2q3IXEs.mp4
    06:24
  • 05. REINFORCE.html
  • 06. (Optional) Derivation.html
  • 07. Coding Exercise.html
  • 08. Workspace.html
  • 09. What's Next.html
  • 10. Summary.html
  • index.html
    • img
    • 350px-normal-distribution-pdf.zip
    • grad-descent.zip
    • jupyter.zip
    • screen-shot-2018-07-17-at-4.44.10-pm.zip
    • screen-shot-2018-07-27-at-2.25.43-pm.zip
  • 01. Instructor Introduction.html
  • 01. Instructor Introduction-sokSgNtGj9Y.mp4
    00:45
  • 02. Lesson Preview.html
  • 02. Training an agent to play atari-pong!-w27mvWFBnvQ.mp4
    01:40
  • 03. Beyond REINFORCE.html
  • 04. Noise Reduction.html
  • 04. Noise Reduction-GCGqT2knFJ0.mp4
    02:20
  • 05. Credit Assignment.html
  • 05. Credit Assignment-tfZw1moB25Y.mp4
    01:26
  • 06. Policy Gradient Quiz.html
  • 07. pong with REINFORCE walkthrough-eKIjPrQWIgg.mp4
    11:13
  • 07. pong with REINFORCE (code walkthrough).html
  • 08. pong with REINFORCE (workspace).html
  • 09. Importance Sampling.html
  • 09. Importance Sampling-cYPvWriOPIk.mp4
    04:23
  • 10. PPO Part 1 The Surrogate Function-Y-boYZlpO7g.mp4
    02:28
  • 10. PPO part 1- The Surrogate Function.html
  • 11. PPO Part 2 Clipping Policy Updates-NRzjGGX6c34.mp4
    04:07
  • 11. PPO part 2- Clipping Policy Updates.html
  • 12. PPO summary.html
  • 12. TLPPO Summary V1-qRAUAAWA_kc.mp4
    00:58
  • 13. Pong with PPO walkthrough-XhfhR7Z01S0.mp4
    05:10
  • 13. pong with PPO (code walkthrough).html
  • 14. pong with PPO (workspace).html
  • index.html
    • img
    • clipped-surrogate.zip
    • clipped-surrogate-explained.zip
    • policy-reward-cliff.zip
  • 01. Introduction.html
  • 01. M3L501 Introduction HS 1 V1-_OHo1pEaJcQ.mp4
    01:43
  • 02. M3 L5 02 Motivation V1-dpFPlDtdxyQ.mp4
    02:42
  • 02. Motivation.html
  • 03. Bias and Variance.html
  • 03. M3 L5 03 Bias And Variance V2-_vnkkwm46uU.mp4
    02:04
  • 04. M3 L5 04 Two Ways For Estimating Expected Returns V3-2W6yIBDvfsQ.mp4
    04:08
  • 04. Two Ways for Estimating Expected Returns.html
  • 05. Baselines and Critics.html
  • 05. M3 L5 05 Baselines And Critics V1-wqmqoiUuQHI.mp4
    02:28
  • 06. M3 L5 06 Policybased Valuebased And ActorCritic V1-iyin896PNEc.mp4
    03:09
  • 06. Policy-based, Value-Based, and Actor-Critic.html
  • 07. A Basic Actor-Critic Agent.html
  • 07. M3 L5 07 A Basic ActorCritic Agent V2-KdHQ24hBKho.mp4
    01:58
  • 08. A3C Asynchronous Advantage Actor-Critic, N-step.html
  • 08. M3 L5 08 A3C Asynchronous Advantage ActorCritic V2-twNXFplIAP8.mp4
    02:54
  • 09. A3C Asynchronous Advantage Actor-Critic, Parallel Training.html
  • 09. M3 L5 09 A3C Asynchronous Advantage ActorCritic Parallel Training V2-kKRbAKhjACo.mp4
    01:56
  • 10. A3C Asynchronous Advantage Actor-Critic, Off- vs On-policy.html
  • 10. M3 L5 10 A3C Asynchronous Advantage ActorCritic Offpolicy Vs Onpolicy V1-AZiy5R0DESU.mp4
    04:45
  • 11. A2C Advantage Actor-Critic.html
  • 11. M3 L5 11 A2C Advantage ActorCritic V2-fIWe3xA97DA.mp4
    01:52
  • 12. A2C Code Walk-through.html
  • 12. A2c Export V1-LiUBJje2N0c.mp4
    14:07
  • 13. GAE Generalized Advantage Estimation.html
  • 13. M3 L5 13 GAE Generalized Advantage Estimation V2-oLFocWp0dt0.mp4
    03:42
  • 14. DDPG Deep Deterministic Policy Gradient, Continuous Actions.html
  • 14. M3 L5 14 DDPG Deep Deterministic Policy Gradient Continuous Actionspace V1-0NVOPIyrr98.mp4
    03:40
  • 15. DDPG Deep Deterministic Policy Gradient, Soft Updates.html
  • 15. M3 L5 15 DDPG Deep Deterministic Policy Gradient Soft Updates V1-RT-HDnAVe9o.mp4
    02:12
  • 16. DDPG Code Walk-through.html
  • 16. DDPG Export V1-08V9r3NgFSE.mp4
    11:37
  • 17. M3L517 Summary HS 1 V1-rRuiMhijw_s.mp4
    01:28
  • 17. Summary.html
  • index.html
  • 01. Introduction.html
  • 01. M3L601 Introduction HS V1-Nn1PblFSnP8.mp4
    00:41
  • 02. High Frequency Trading.html
  • 02. M3L602 High Frequency Trading HFT RENDER V2-oM1zZdZ-8fE.mp4
    02:23
  • 03. Challenges of Supervised Learning.html
  • 03. M3L603 Challenges Of Supervised Learning RENDER V1-_hAPnbDtteM.mp4
    02:50
  • 04. Advantages of RL for Trading.html
  • 04. M3L04 Advantages Of Reinforcemnt Learning For Trading RENDER V1-rqHL4BZocI8.mp4
    02:33
  • 05. M3L606 Optimization SC PT1 V1-6NiRtFyA2DU.mp4
    00:59
  • 05. Optimal Liquidation Problem - Part 1 - Introduction.html
  • 06. M3L607 Optimization SC PT2 V1-JzL66ZbTC9U.mp4
    01:53
  • 06. Optimal Liquidation Problem - Part 2 - Market Impact.html
  • 07. M3L608 Optimization SC PT3 V1-3pN77gMg788.mp4
    02:15
  • 07. Optimal Liquidation Problem - Part 3 - Price Model.html
  • 08. M3L609 Optimization SC PT4 V2-N2LP-wg1jEI.mp4
    05:08
  • 08. Optimal Liquidation Problem - Part 4 - Expected Shortfall.html
  • 09. Almgren and Chriss Model.html
  • 09. M3L610 Almgren And Chriss Model SC V1-rokcEQ4LXbU.mp4
    04:45
  • 10. M3L611 Trading Lists SC V1-cGT-ADpHR74.mp4
    05:38
  • 10. Trading Lists.html
  • 11. M3L612 The Efficient Frontier V1-EwM7Ksbs-ds.mp4
    04:46
  • 11. The Efficient Frontier.html
  • 12. DRL for Optimal Execution of Portfolio Transactions.html
  • index.html
  • 01. Unity ML-Agents.html
  • 02. The Environment - Introduction.html
  • 03. The Environment - Real World.html
  • 04. The Environment - Explore.html
  • 04. Untitled-i2gVvXgOMnc.mp4
    00:32
  • 05. Project Instructions.html
  • 06. Benchmark Implementation.html
  • 07. Not sure where to start.html
  • 08. General Advice.html
  • 09. Collaborate!.html
  • 10. Workspace.html
  • 11. (Optional) Challenge Crawl.html
  • Project Description - Continuous Control.html
  • Project Rubric - Continuous Control.html
  • index.html
    • img
    • 849-1234251683jkyt.zip
    • 2018-02-27-16-05-37.zip
    • crawler.zip
    • idea-2579308-640.zip
    • image8.zip
    • output.zip
    • pic3.zip
    • reacher.zip
    • screen-shot-2018-05-02-at-4.56.45-pm.zip
    • screen-shot-2018-05-03-at-9.10.50-am.zip
    • screen-shot-2018-07-11-at-11.19.56-am.zip
    • udacitylogo.zip
    • unity-wide.zip
    • unknown.zip
  • 01. Get Opportunities with LinkedIn.html
  • 01. Why Network-exjEm9Paszk.mp4
    02:00
  • 02. Meet Chris-0ccflD9x5WU.mp4
    03:00
  • 02. Use Your Story to Stand Out.html
  • 03. Elevator Pitch-S-nAHPrkQrQ.mp4
    02:04
  • 03. Why Use an Elevator Pitch.html
  • 04. Create Your Elevator Pitch.html
  • 04. Elevator Pitch-0QtgTG49E9I.mp4
    01:08
  • 04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4
    00:50
  • 05. Use Your Elevator Pitch on LinkedIn.html
  • 06. Create Your Profile With SEO In Mind.html
  • 07. Profile Essentials.html
  • 08. Work Experiences Accomplishments.html
  • 09. Build and Strengthen Your Network.html
  • 10. Reaching Out on LinkedIn.html
  • 11. Boost Your Visibility.html
  • 12. Up Next.html
  • Project Description - Improve Your LinkedIn Profile.html
  • Project Rubric - Improve Your LinkedIn Profile.html
  • index.html
    • img
    • profile-pics.zip
    • redacted-linkedinresults.zip
    • screen-shot-2018-02-23-at-5.00.25-pm.zip
    • screen-shot-2018-02-23-at-5.11.40-pm.zip
    • screen-shot-2018-09-21-at-11.36.43-am.zip
    • screen-shot-2018-09-21-at-12.02.03-pm.zip
    • speaking.zip
      media
    • unnamed-project-desc-0.zip
    • unnamed-project-desc-1.zip
  • 01. Study Plan.html
  • index.html
    • img
    • udacitylogo.zip
  • 01. Introducing Chhavi.html
  • 01. M4 L2 C01 Introducing Chhavi HS V1-imuw8tOMed4.mp4
    00:18
  • 02. Introduction to Multi-Agent Systems.html
  • 02. M4 L2 C02 Introduction To Multi Agent Systems V1-ra-w63kzq6I.mp4
    01:13
  • 03. M4 L2 C03 Motivation For Multi Agent Systems V1-i_s22qgQYL4.mp4
    01:22
  • 03. Motivation for Multi-Agent Systems.html
  • 04. Applications of Multi-Agent Systems.html
  • 04. M4 L2 C04 Applications Of Multi Agent Systems V2-fw0G_gSDm6Q.mp4
    01:02
  • 05. Benefits of Multi-Agent Systems.html
  • 05. M4 L2 C05 Benefits Of Multi Agent Systems V2-NXDv9cEZTaw.mp4
    01:23
  • 06. M4 L2 C06 Markov Games 2 V1-Y9qq4Jqnwls.mp4
    02:22
  • 06. Markov Games.html
  • 07. Markov Games.html
  • 08. Approaches to MARL.html
  • 08. M4 L2 C07 Approaches To MARL V1-uKV9AJykin0.mp4
    01:54
  • 09. Cooperation, Competition, Mixed Environments.html
  • 09. M4 L2 C08 Cooperation Competition Mixed Environments A V1-vx6PIH5_oFg.mp4
    01:24
  • 10. M4 L2 C09 Paper Description Part I HSAEG V1-nRKrQamUISs.mp4
    00:35
  • 10. Research Topics.html
  • 11. M4 L2 C10a Paper Description Part II V1-Ks9-TeCg3Fs.mp4
    00:58
  • 11. Paper Description, Part 1.html
  • 12. M4 L2 C10b Paper Description Part II V2-4hFAhtLJR5U.mp4
    01:21
  • 12. Paper Description, Part 2.html
  • 13. M4 L2 C11 Summary HS V1-yGPHGYHqjq8.mp4
    01:08
  • 13. Summary.html
  • 14. Lab Instructions.html
  • 15. MADDPG - Lab.html
  • index.html
  • 01. AlphaZero Preview.html
  • 01. Alpha Zero Preview-Zzc1XJ1aJ-4.mp4
    01:51
  • 02. Zero-Sum Game.html
  • 02. Zero-Sum Game-uPw1dHVqdXQ.mp4
    03:55
  • 03. Monte Carlo Tree Search 1 - Random Sampling.html
  • 03. Monte Carlo Tree Search 1 - Random Sampling-wn2B3j_Qz6E.mp4
    04:58
  • 04. Monte Carlo Tree Search 2 - Expansion and Back-propagation.html
  • 04. Monte Carlo Tree Search 2 - Expansion and Back-propagation-H34Wtk1iNDY.mp4
    05:04
  • 05. AlphaZero 1 Guided Tree Search.html
  • 05. AlphaZero 1 Guided Tree Search-LinuRy47xbw.mp4
    06:11
  • 06. AlphaZero 2 Self-Play Training.html
  • 06. Alpha Zero 2 Self-Play Training-wl1qfPXqRuQ.mp4
    04:10
  • 07. Alphazero python classes walkthrough-hKnBQvtJ_zQ.mp4
    12:13
  • 07. TicTacToe using AlphaZero - notebook walkthrough-uUFuBscf98I.mp4
    17:14
  • 07. TicTacToe using AlphaZero - walkthrough.html
  • 08. TicTacToe using AlphaZero - Workspace.html
  • 09. Advanced TicTacToe using AlphaZero.html
  • 09. Alphazero advanced tictactoe walkthrough-MOIk_BbCjRw.mp4
    07:10
  • index.html
  • 01. Unity ML-Agents.html
  • 02. The Environment - Introduction.html
  • 03. The Environment - Explore.html
  • 03. Untitled-kxDvrkg8ep0.mp4
    00:23
  • 04. Project Instructions.html
  • 05. Benchmark Implementation.html
  • 06. Collaborate!.html
  • 07. Workspace.html
  • 08. (Optional) Challenge Play Soccer.html
  • Project Description - Collaboration and Competition.html
  • Project Rubric - Collaboration and Competition.html
  • index.html
    • img
    • 849-1234251683jkyt.zip
    • 2018-02-27-16-05-37.zip
    • screen-shot-2018-08-16-at-4.37.07-pm.zip
    • soccer.zip
    • tennis.zip
    • unity-wide.zip
    • we-can-do-it-poster-1393770492mjo.zip
  • 01. Introduction.html
  • 01. Introduction-ek2PD9RDrWw.mp4
    00:42
  • 02. OpenAI Gym FrozenLakeEnv.html
  • 03. Your Workspace.html
  • 04. Another Gridworld Example.html
  • 04. Another Gridworld Example-n9SbomnLb-U.mp4
    01:23
  • 05. An Iterative Method, Part 1.html
  • 05. An Iterative Method-AX-hG3KvwzY.mp4
    05:51
  • 06. An Iterative Method, Part 2.html
  • 07. Quiz An Iterative Method.html
  • 08. Iterative Policy Evaluation.html
  • 08. Iterative Policy Evaluation-eDXIL_oOJHI.mp4
    04:50
  • 09. Implementation.html
  • 10. Mini Project DP (Parts 0 and 1).html
  • 11. Action Values.html
  • 12. Implementation.html
  • 13. Mini Project DP (Part 2).html
  • 14. Policy Improvement.html
  • 14. Policy Improvement-4_adUEK0IHg.mp4
    05:59
  • 15. Implementation.html
  • 16. Mini Project DP (Part 3).html
  • 17. Policy Iteration.html
  • 17. Policy Iteration-gqv7o1kBDc0.mp4
    01:29
  • 18. Implementation.html
  • 19. Mini Project DP (Part 4).html
  • 20. Truncated Policy Iteration.html
  • 20. Truncated Policy Iteration-a-RvCxlPMho.mp4
    02:28
  • 21. Implementation.html
  • 22. Mini Project DP (Part 5).html
  • 23. Value Iteration.html
  • 23. Value Iteration-XNeQn8N36y8.mp4
    02:55
  • 24. Implementation.html
  • 25. Mini Project DP (Part 6).html
  • 26. Check Your Understanding.html
  • 27. Summary.html
  • index.html
    • img
    • actionvalue.zip
    • est-action.zip
    • frozen-lake-6.zip
    • improve.zip
    • iteration.zip
    • policy-eval.zip
    • screen-shot-2017-09-26-at-2.18.38-pm.zip
    • screen-shot-2017-09-26-at-4.22.09-pm.zip
    • screen-shot-2017-09-26-at-11.03.16-pm.zip
    • screen-shot-2017-10-02-at-10.41.44-am.zip
    • screen-shot-2017-12-17-at-9.41.03-am.zip
    • statevalue.zip
    • truncated-eval.zip
    • truncated-iter.zip
    • value-iteration.zip
  • 01. Introducing Luis.html
  • 02. Why Neural Networks.html
  • 02. Why Neural Networks-zAkzOZntK6Y.mp4
    00:46
  • 03. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
    02:09
  • 03. Combinando modelos-Boy3zHVrWB4.mp4
    03:47
  • 03. Layers-pg99FkXYK0M.mp4
    02:08
  • 03. Multiclass Classification-uNTtvxwfox0.mp4
    01:19
  • 03. Neural Network Architecture.html
  • 04. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
    04:19
  • 04. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
    01:20
  • 04. Feedforward.html
  • 05. Backpropagation.html
  • 05. Backpropagation V2-1SmY3TZTyUk.mp4
    05:12
  • 05. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
    02:20
  • 05. Chain Rule-YAhIBOnbt54.mp4
    01:14
  • 05. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
    04:37
  • 06. Training Optimization.html
  • 06. Training Optimization-UiGKhx9pUYc.mp4
    00:27
  • 07. Testing.html
  • 07. Testing-EeBZpb-PSac.mp4
    01:42
  • 08. Overfitting and Underfitting.html
  • 08. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
    05:07
  • 09. Early Stopping.html
  • 09. Model Complexity Graph-NnS0FJyVcDQ.mp4
    03:40
  • 10. DL 53 Q Regularization-KxROxcRsHL8.mp4
    00:52
  • 10. Regularization.html
  • 11. Regularization 2.html
  • 11. Regularization-ndYnUrx8xvs.mp4
    06:00
  • 12. Dropout.html
  • 12. Dropout-Ty6K6YiGdBs.mp4
    03:08
  • 13. Local Minima.html
  • 13. Local Minima-gF_sW_nY-xw.mp4
    00:42
  • 14. Vanishing Gradient.html
  • 14. Vanishing Gradient-W_JJm_5syFw.mp4
    01:04
  • 15. Other Activation Functions.html
  • 15. Other Activation Functions-kA-1vUt6cvQ.mp4
    01:49
  • 16. Batch vs Stochastic Gradient Descent.html
  • 16. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
    03:04
  • 17. Learning Rate Decay.html
  • 17. Learning Rate-TwJ8aSZoh2U.mp4
    00:43
  • 18. Random Restart.html
  • 18. Random Restart-idyBBCzXiqg.mp4
    00:17
  • 19. Momentum.html
  • 19. Momentum-r-rYz_PEWC8.mp4
    01:46
  • index.html
    • img
    • luis-circle.zip
    • regularization-quiz.zip
    • sigmoid-derivative.zip
  • 01. Introducing Cezanne.html
  • 02. 03 Data And Lesson Outline RENDER V2-jPr-5aZA6NE.mp4
    01:04
  • 02. Lesson Outline and Data.html
  • 03. CNN Architecture, VGG-16.html
  • 04. Convolutional Layers.html
  • 04. Convolutional Layers (Part 2)-LX-yVob3c28.mp4
    07:51
  • 05. Defining Layers in PyTorch.html
  • 06. Notebook Visualizing a Convolutional Layer.html
  • 07. Pooling, VGG-16 Architecture.html
  • 08. Pooling Layers.html
  • 08. Pooling Layers-OkkIZNs7Cyc.mp4
    04:14
  • 09. Notebook Visualizing a Pooling Layer.html
  • 10. Fully-Connected Layers, VGG-16.html
  • 11. Notebook Visualizing FashionMNIST.html
  • 12. Training in PyTorch.html
  • 13. Notebook Fashion MNIST Training Exercise.html
  • 14. Notebook FashionMNIST, Solution 1.html
  • 15. Dropout-Ty6K6YiGdBs.mp4
    03:08
  • 15. Review Dropout.html
  • 15.-r-rYz_PEWC8.mp4
    01:46
  • 16. Notebook FashionMNIST, Solution 2.html
  • 17. 04 Feature Visualization V1 RENDER V2-xwGa7RFg1EQ.mp4
    01:46
  • 17. Feature Visualization.html
  • 18. 05 Feature Maps V1RENDER V3-oRhsJHHWtu8.mp4
    01:09
  • 18. Feature Maps.html
  • 19. 06 First Convolutional Layer T1 V1 RENDER V2-hIHDMWVSfsM.mp4
    02:05
  • 19. First Convolutional Layer.html
  • 20. Visualizing CNNs (Part 2).html
  • 21. 10 Visualizing Activations V1 RENDER V2-CJLNTOXqt3I.mp4
    00:54
  • 21. Visualizing Activations.html
  • 22. Notebook Feature Viz for FashionMNIST.html
  • 23. Notebook Visualize Your Net Layers.html
  • 24. Last Feature Vector and t-SNE.html
  • 25. Occlusion, Saliency, and Guided Backpropagation.html
  • 26. 20 Summary Of Feature Viz V2 RENDER V2-r2LBoEkXskU.mp4
    01:05
  • 26. Summary of Feature Viz.html
  • index.html
    • img
    • alexis.zip
    • cezanne-circle.zip
    • diagonal-line-1.zip
    • diagonal-line-2.zip
    • embedding.zip
    • grid-layer-1.zip
    • layer-1-grid.zip
    • screen-shot-2016-11-24-at-12.08.11-pm.zip
    • screen-shot-2016-11-24-at-12.09.02-pm.zip
    • screen-shot-2016-11-24-at-12.09.24-pm.zip
    • screen-shot-2018-04-06-at-4.54.39-pm.zip
    • screen-shot-2018-04-23-at-8.35.17-pm.zip
    • screen-shot-2018-04-23-at-8.35.25-pm.zip
    • screen-shot-2018-04-24-at-4.49.51-pm.zip
    • screen-shot-2018-04-24-at-5.08.30-pm.zip
    • screen-shot-2018-04-24-at-5.08.36-pm.zip
    • screen-shot-2018-04-24-at-5.47.43-pm.zip
    • screen-shot-2018-04-24-at-12.35.07-pm.zip
    • screen-shot-2018-04-24-at-12.47.51-pm.zip
    • screen-shot-2018-04-24-at-12.58.16-pm.zip
    • t-sne-mnist.zip
    • vgg-16.zip
  • 01. Introducing Mat.html
  • 02. Introducing PyTorch.html
  • 03. Part 1 V2-n4mbZYIfKb4.mp4
    07:32
  • 03. PyTorch Tensors.html
  • 04. Defining Networks.html
  • 04. Py Part 2 V1-u50_ZyKqt8g.mp4
    17:17
  • 05. Py Part 3 V2-u8hDj5aJK6I.mp4
    13:09
  • 05. Training Networks.html
  • 06. Fashion-MNIST Exercise.html
  • 06. PyTorch - Part 4-AEJV_RKZ7VU.mp4
    01:25
  • 07. Inference Validation.html
  • 07. Py Part 5 V2-coBbbrGZXI0.mp4
    13:02
  • 08. Py Part 6 V1-HiTih59dCWQ.mp4
    06:09
  • 08. Saving and Loading Trained Networks.html
  • 09. Loading Data Sets with Torchvision.html
  • 09. PyTorch - Part 7-hFu7GTfRWks.mp4
    07:04
  • 10. Py Part 8 V1-3eqn5sgCOsY.mp4
    09:57
  • 10. Transfer Learning.html
  • index.html
    • img
    • mat-leonard-circle.zip
  • 01. Overview.html
  • 02. Create an AWS Account.html
  • 03. Get Access to GPU Instances.html
  • 04. Apply Credits.html
  • 05. Launch an Instance.html
  • 06. Login to the Instance.html
  • 07. Test the Instance.html
  • index.html
    • img
    • aws-add-sec-group.zip
    • aws-create-account.zip
    • aws-inst-stats.zip
    • edit-security-group.zip
    • launch.zip
    • launch-instance.zip
    • p2xlarge-limit-request.zip
    • p2-limit-increase.zip
    • review-and-launch.zip
    • screen-shot-2017-06-13-at-12.58.03-pm.zip
    • screen-shot-2017-11-26-at-9.38.24-am.zip
    • screen-shot-2017-11-26-at-9.55.20-am.zip
    • screen-shot-2017-11-26-at-10.30.15-am.zip
    • screen-shot-2018-01-08-at-5.37.22-am.zip
    • screen-shot-2018-01-08-at-5.38.03-am.zip
    • stop.zip
    • ud272-l2-16-10-aws-account.zip
  • 01. Overview.html
  • 02. Introduction to Workspaces.html
  • 03. Workspaces Best Practices.html
  • index.html
    • img
    • jupyter-logo.zip
    • workspaces-jupyter.zip
    • workspaces-menu.zip
    • workspaces-new.zip
    • workspaces-notebook.zip
    • workspaces-submit.zip
    • workspaces-terminal.zip
  • 01. Introduction.html
  • 01. Introduction-ahoiVrq4qAk.mp4
    00:58
  • 02. Lesson Overview.html
  • 02. Lesson Overview C++-lR3PH3bL-9U.mp4
    01:08
  • 02. Nd113 C3 L1 04 L Lesson Overview 2 V1-DjT2E23xhj8.mp4
    00:49
  • 03. Elecia White.html
  • 04. Why C++.html
  • 04. Why C++-_t4ZvwfnuCA.mp4
    01:43
  • 05. Python and C++ Comparison.html
  • 06. Static Vs Dynamic Typing-D7v6iIAORkE.mp4
    01:47
  • 06. Static vs Dynamic Typing.html
  • 07. C++ - A Statically Typed Language.html
  • 08. Basic Data Types.html
  • 09. Floating versus Double [demonstration].html
  • 10. Doubles Are Bigger-uhwTWgmM2iY.mp4
    00:52
  • 10. Doubles are Bigger.html
  • 11. Common Errors and Error Messages.html
  • 12. C++ Functions.html
  • 13. Anatomy of a Function.html
  • 14. Multiple Outputs.html
  • 15. Two Functions Same Name.html
  • 15. Two Functions Same Name-0ZF649G58l4.mp4
    00:45
  • 15. Two Functions Same Name-9SgmzOfBmRU.mp4
    01:46
  • 16. Function Signatures 1.html
  • 16. Function Signatures 1-T6kQ_4w98IQ.mp4
    01:48
  • 17. Function Signatures 2.html
  • 17. Function Signatures 2-Sx4AWTmXl2U.mp4
    01:07
  • 17. Function Signatures 3 V1-U3QAFb3AS1M.mp4
    00:16
  • 18. If and Boolean Logic.html
  • 19. While and For Loops.html
  • 20. Switch Statement.html
  • 21. Libraries.html
  • 22. Forge on!.html
  • 22. Nd113 C Basics Last Video V1-dtu-RXovl0U.mp4
    00:20
  • index.html
    • img
    • copy-of-template-1.zip
    • copy-of-template-2.zip
    • cover.zip
    • embeddedlogo-04.zip
    • for.zip
    • my-drawing.zip
    • switch.zip
    • while.zip
  • 01. C++ Vectors.html
  • 02. Namespaces.html
  • 03. Python Lists vs. C++ Vectors.html
  • 04. Initializing Vector Values.html
  • 05. Vector Methods.html
  • 06. Vectors and For Loops.html
  • 07. Math and Vectors.html
  • 08. 1D Vector Playground.html
  • 09. 2D Vectors.html
  • 10. 2D Vectors and For Loops.html
  • 11. 2D Vector Playground.html
  • 12. Next Lesson.html
  • index.html
    • img
    • copy-of-template.zip
    • vectors.zip
  • 01. Introduction To Compilation-dyzGEB8YDGg.mp4
    03:04
  • 01. Introduction to Compilation.html
  • 02. Running Code Locally.html
  • 03. C++ Versions.html
  • 04. Structuring Functions and File Organization.html
  • 05. Input and Output.html
  • 06. Reading in Text Files.html
  • 07. Outputting to Text Files.html
  • 08. Exercises.html
  • index.html
  • 01. Introduction.html
  • 01. Introduction-4xHI5LFX-cQ.mp4
    00:39
  • 02. Python vs. C++.html
  • 03. Why Use Object Oriented Programming-G2KzZfNu9Ak.mp4
    01:30
  • 03. Why use Object Oriented Programming.html
  • 04. Using a Class in C++ [Demo].html
  • 05. Explanation of the Main.cpp File.html
  • 06. Practice Using a Class.html
  • 07. Review Anatomy of a Class.html
  • 08. Other Facets of C++ Classes.html
  • 09. Private and Public.html
  • 10. Header Files.html
  • 11. Inclusion Guards.html
  • 12. Implement a Class.html
  • 13. Class Variables.html
  • 14. Class Function Declarations.html
  • 15. Constructor Functions.html
  • 16. Set and Get Functions.html
  • 17. Matrix Functions.html
  • 18. Use an Inclusion Guard.html
  • 19. Instantiate an Object.html
  • 20. Running your Program Locally.html
  • index.html
  • 01. Course Introduction.html
  • 01. Course Introduction-Lwc5oYApdUM.mp4
    00:43
  • 02. C Opt 01 L V2-Kdx1_BI5ddc.mp4
    02:10
  • 02. Empathize with the Computer.html
  • 03. 02 L Intro To Comp HW V1 RENDER V1-WDMGkq9mkB8.mp4
    03:40
  • 03. Intro to Computer Hardware.html
  • 04. Embedded Terminal Explanation.html
  • 04. Nd113 Embedded Terminal V1-Bhl5JQ_N9V8.mp4
    07:54
  • 05. Demo Machine Code.html
  • 06. Assembly Language.html
  • 07. 03 L Binary V1 RENDER V1-K6CpHxnhc2s.mp4
    04:40
  • 07. Binary.html
  • 08. Demo Binary.html
  • 09. Demo Binary Floats.html
  • 10. 04 L C And RAM V1 RENDER V1-60jEbKV1UOI.mp4
    02:36
  • 10. Memory and the CPU.html
  • 11. Demo Stack vs Heap.html
  • 12. C Opt 05 L V3-rTtZVyWxYG8.mp4
    01:28
  • 12. Outro.html
  • index.html
    • img
    • cli.zip
    • emptyterminal.zip
    • files.zip
    • menu.zip
    • menuopen.zip
    • texteditor.zip
    • untitled-drawing.zip
  • 01. Introduction.html
  • 02. Software Development and Optimization.html
  • 03. Optimization Techniques.html
  • 04. Dead Code.html
  • 05. Exercise Remove Dead Code.html
  • 06. If Statements.html
  • 07. Exercise If Statements.html
  • 08. For Loops.html
  • 09. Exercise For Loops.html
  • 10. Intermediate Variables.html
  • 11. Exercise Intermediate Variables.html
  • 12. Vector Storage.html
  • 13. Exercise Vector Storage.html
  • 14. References.html
  • 15. Exercise References.html
  • 16. Nd113 Story 1 V1-lIe2zso8A-w.mp4
    02:24
  • 16. Sebastian's Synchronization Story.html
  • 17. Static Keyword.html
  • 18. Exercise Static Keyword.html
  • 19. Nd113 C L2 01 V1-h_P7ceb5ido.mp4
    00:31
  • 19. Speed Challenge.html
  • index.html
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Udacity, Inc. is an American for-profit educational organization founded by Sebastian Thrun, David Stavens, and Mike Sokolsky offering massive open online courses. According to Thrun, the origin of the name Udacity comes from the company's desire to be "audacious for you, the student".
    • language english
    • Training sessions 246
    • duration 11:48:30
    • English subtitles has
    • Release Date 2023/03/09

    Courses related to Deep Learning