01.01-introduction to the instructor.mp4
12:36
01.02-focus of the course.mp4
10:15
02.01-probability versus statistics.mp4
06:14
03.01-definition of set.mp4
08:31
03.02-cardinality of a set.mp4
15:43
03.03-subsets power set and universal set.mp4
06:39
03.04-python practice subsets.mp4
07:23
03.05-power sets solution.mp4
14:57
03.06-operations.mp4
11:51
03.07-python practice operations.mp4
07:37
03.08-venn diagrams operations.mp4
06:37
03.09-homework.mp4
04:10
04.01-random experiment.mp4
06:04
04.02-outcome and sample space.mp4
10:01
04.03-event.mp4
07:36
04.04-recap and homework.mp4
05:20
05.01-probability model.mp4
09:54
05.02-probability axioms.mp4
11:49
05.03-probability axioms derivations.mp4
05:03
05.04-probability models example.mp4
06:41
05.05-more examples of probability models.mp4
06:17
05.06-probability models continuous.mp4
07:07
05.07-conditional probability.mp4
10:49
05.08-conditional probability example.mp4
10:49
05.09-conditional probability formula.mp4
07:18
05.10-conditional probability in machine learning.mp4
19:11
05.11-conditional probability total probability theorem.mp4
07:55
05.12-probability models independence.mp4
06:05
05.13-probability models conditional independence.mp4
07:13
05.14-probability models bayes rule.mp4
06:28
05.15-probability models towards random variables.mp4
11:25
05.16-homework.mp4
01:05
06.01-introduction.mp4
09:21
06.02-random variables examples.mp4
08:28
06.03-bernoulli random variables.mp4
11:52
06.04-bernoulli trail python practice.mp4
15:27
06.05-geometric random variable.mp4
08:32
06.06-geometric random variable normalization proof optional.mp4
06:32
06.07-geometric random variable python practice.mp4
15:06
06.08-binomial random variables.mp4
06:55
06.09-binomial python practice.mp4
10:58
06.10-random variables in real datasets.mp4
22:54
06.11-homework.mp4
01:32
07.01-zero probability to individual values.mp4
08:16
07.02-probability density functions.mp4
14:21
07.03-uniform distribution.mp4
05:58
07.04-uniform distribution python.mp4
05:11
07.05-exponential.mp4
03:33
07.06-exponential python.mp4
08:11
07.07-gaussian random variables.mp4
07:11
07.08-gaussian python.mp4
23:08
07.09-transformation of random variables.mp4
12:44
07.10-homework.mp4
00:50
08.01-definition.mp4
05:07
08.02-sample mean.mp4
10:58
08.03-law of large numbers.mp4
11:51
08.04-law of large numbers famous distributions.mp4
12:55
08.05-law of large numbers famous distributions python.mp4
21:28
08.06-variance.mp4
10:54
08.07-homework.mp4
01:08
09.01-project bayes classifier from scratch.mp4
52:11
10.01-joint distributions.mp4
09:57
10.02-multivariate gaussian.mp4
06:46
10.03-conditioning independence.mp4
05:02
10.04-classification.mp4
04:49
10.05-naive bayes classification.mp4
03:36
10.06-regression.mp4
04:01
10.07-curse of dimensionality.mp4
05:44
10.08-homework.mp4
01:27
11.01-parametric distributions.mp4
05:23
11.02-maximum likelihood estimate (mle).mp4
05:18
11.03-log likelihood.mp4
07:45
11.04-logistic regression.mp4
04:20
11.05-ridge regression.mp4
09:45
11.06-deep neural network (dnn).mp4
05:47
12.01-permutations.mp4
08:46
12.02-combinations.mp4
13:20
12.03-binomial random variable.mp4
06:40
12.04-logistic regression formulation.mp4
07:25
12.05-logistic regression derivation.mp4
18:48