Companies Home Search Profile

Master R for Statistics and Data Science

Focused View

Brian Greco

5:53:07

5 View
  • 1. Introduction.mp4
    00:54
  • 2. Install R and RStudio.html
  • 1. Variables and assignment.mp4
    02:05
  • 2. Variables and assignment.html
  • 3. Variables and assignment coding assignment.mp4
    01:24
  • 4. Variables and assignment.html
  • 5. Vectors with c().mp4
    01:52
  • 6. vectors with c().html
  • 7. Vectors with c() solution.mp4
    00:37
  • 8. The colon .mp4
    01:06
  • 9. Vector and colon quiz.html
  • 10. colon .html
  • 11. colon coding solution.mp4
    00:31
  • 12. seq().mp4
    02:35
  • 13. seq() quiz.html
  • 14. seq() exercise 1.html
  • 15. seq() exercise 1 solution.mp4
    00:42
  • 16. seq() exercise 2.html
  • 17. seq() exercise 2 solution.mp4
    00:41
  • 18. rep().mp4
    02:25
  • 19. rep() quiz.html
  • 20. rep() exercise 1.html
  • 21. rep() exercise 1 solution.mp4
    00:53
  • 22. rep() exercise 2.html
  • 23. rep() exercise 2 solution.mp4
    00:53
  • 1. Introduction to vectorized operations.mp4
    02:41
  • 2. Vectorized operations quiz.html
  • 3. Adding a number to all elements of a vector.html
  • 4. Adding a number to all elements of a vector solution.mp4
    01:01
  • 5. Converting Celsius to Fahrenheit.html
  • 6. Converting Celsius to Fahrenheit solution.mp4
    01:30
  • 7. Adding two vectors - weights of twins.html
  • 8. Adding two vectors - weights of twins solution.mp4
    01:13
  • 1. Common functions in R.mp4
    04:14
  • 2. mean(), median(), sum(), length().html
  • 3. mean() median() sum() length() solution.mp4
    01:34
  • 4. sd() and var().html
  • 5. sd() and var() solution.mp4
    01:04
  • 6. summary().html
  • 7. summary() solution.mp4
    01:51
  • 8. Missing data and na.rm.mp4
    01:30
  • 1. Basics of subsetting.mp4
    03:33
  • 2. Subsetting quiz 1.html
  • 3. subsetting.html
  • 4. subsetting with c().html
  • 5. subsetting with .html
  • 6. removing elements with -.html
  • 1. Booleans.mp4
    05:33
  • 2. Boolean Quiz 1.html
  • 3. ==, , , =, =.html
  • 4. Subsetting a vector with a boolean.mp4
    01:51
  • 1. Creating matrices with cbind and rbind.mp4
    03:12
  • 2. cbind() and rbind().html
  • 3. cbind and rbind quiz.html
  • 4. Creating matrices with matrix().mp4
    03:37
  • 5. matrix() quiz.html
  • 6. matrix() 1.html
  • 7. dim(), nrow(), ncol() quiz.html
  • 1. Matrix subsetting.mp4
    02:47
  • 2. Matrix subsetting quiz 1.html
  • 3. matrix subsetting rows and columns.html
  • 4. matrix subsetting, only certain columns.html
  • 5. matrix subsetting, only certain rows.html
  • 6. Matrix subsetting with booleans.mp4
    02:27
  • 7. matrix subsetting, rows that meet a boolean criterion.html
  • 1. apply().mp4
    05:10
  • 2. apply() quiz 1.html
  • 3. rowSums() and rowMeans().html
  • 4. apply().html
  • 1. Data frames.mp4
    03:06
  • 2. creating data frames.html
  • 3. data frame quiz.html
  • 1. Lists.mp4
    03:44
  • 2. list quiz.html
  • 1. sample().mp4
    02:25
  • 2. sample().html
  • 3. sample() quiz.html
  • 4. Subsetting data randomly with sample().mp4
    03:56
  • 5. test and train data.html
  • 6. testtrain quiz.html
  • 1. Binary random variables, sample space.mp4
    05:50
  • 2. Simulating Bernoulli random variables with rbinom().mp4
    08:47
  • 3. rbinom() exercise.html
  • 4. Parameters - The population proportion.mp4
    05:07
  • 5. Sample statistics - mean() for calculating sample proportions.mp4
    04:38
  • 6. dbinom().mp4
    03:32
  • 7. dbinom() exercise.html
  • 1. Binomial random variables.mp4
    09:27
  • 2. mean(rbinom()), Law of Large Numbers.mp4
    03:45
  • 3. Bernoulli trials - counting successes and failures.html
  • 4. Generating Binomial random variables with rbinom().html
  • 5. Estimating probabilities with mean() and rbinom().mp4
    03:07
  • 6. dbinom() intro.mp4
    01:55
  • 7. dbinom().html
  • 8. Expected Value.mp4
    08:33
  • 9. Variance and Standard Deviation.mp4
    08:35
  • 10. cdf and pbinom().mp4
    09:22
  • 11. pbinom().html
  • 12. Other types of inequalities and intervals.mp4
    06:43
  • 13. Visualizing the cdf.mp4
    03:10
  • 14. The median.mp4
    06:25
  • 15. qbinom().mp4
    09:12
  • 16. qbinom().html
  • 17. Problem-solving with qbinom().mp4
    04:24
  • 1. binom.test.mp4
    03:36
  • 2. binom.test.html
  • 1. Hypergeometric random variables.mp4
    12:00
  • 1. Normal random variables and the empirical rule.mp4
    09:29
  • 2. Empirical rule with rnorm().mp4
    04:34
  • 3. dnorm() and continuous distributions.mp4
    10:51
  • 4. pnorm() and the empirical rule.mp4
    01:17
  • 5. qnorm().mp4
    07:40
  • 6. rnorm(), mean, and sd.html
  • 7. pnorm().html
  • 8. dnorm() and plotting, continuous distributions.html
  • 9. qnorm().html
  • 10. Normal approximation to the binomial distribution.html
  • 11. prop.test() one sample.html
  • 12. prop.test two sample.html
  • 13. prop.test two sample example.html
  • 1. Expected value of a sum.mp4
    03:51
  • 2. Standard deviation of a sum.mp4
    03:05
  • 3. Sums of normal random variable is normal.mp4
    01:05
  • 4. Mean and sd of binomial distribution, Normal approximation to the binomial.mp4
    04:01
  • 1. Geometric random variables.mp4
    03:58
  • 2. rgeom().mp4
    01:52
  • 3. dgeom().mp4
    05:29
  • 4. dgeom().html
  • 5. Expected value and standard deviation of geometric distribution.mp4
    04:45
  • 6. pgeom(), the cdf.mp4
    03:27
  • 7. pgeom().html
  • 8. qgeom().mp4
    03:52
  • 9. qgeom() coding exercise.html
  • 1. Negative binomial random variables.mp4
    04:29
  • 2. rnbinom().mp4
    02:35
  • 3. dnbinom().mp4
    05:38
  • 4. dnbinom(), pnbinom(), qnbinom() coding exercise.html
  • 5. Mean and standard deviation of negative binomial distribution.mp4
    02:10
  • 6. pnbinom().mp4
    03:05
  • 7. qnbinom().mp4
    06:13
  • 8. Normal approximation to the negative binomial coding exercise.html
  • 1. Exponential random variables.mp4
    04:05
  • 2. rexp().mp4
    02:39
  • 3. rexp() coding exercise.html
  • 4. dexp().mp4
    01:12
  • 5. Expected value and sd of exponential distribution.mp4
    03:35
  • 6. pexp() and memorylessness.mp4
    04:52
  • 7. pexp() coding exercise.html
  • 8. qexp().mp4
    01:02
  • 9. qexp() coding exercise.html
  • 1. Gamma distribution and rgamma().mp4
    04:18
  • 2. Expected value and standard deviation of gamma distribution.mp4
    02:34
  • 3. dgamma() and pgamma().mp4
    02:19
  • 4. qgamma().mp4
    01:21
  • 5. pgamma() and qgamma() coding exercise.html
  • 6. Normal approximation to gamma distribution.mp4
    04:46
  • 7. Normal approximation to gamma distribution coding exercise.html
  • 1. Poisson distribution and rpois().mp4
    08:06
  • 2. rpois() coding exercise.html
  • 3. dpois().mp4
    01:57
  • 4. dpois() coding exercise.html
  • 5. Expected value and standard deviation.mp4
    02:08
  • 6. ppois().mp4
    01:30
  • 7. ppois() coding exercise.html
  • 8. qpois().mp4
    01:15
  • 9. qpois() coding exercise.html
  • 10. Dealing with different time periods.mp4
    03:34
  • 11. Normal approximation to the Poisson distribution.mp4
    03:45
  • 12. Poisson Normal Approximation coding exercise.html
  • 1. Uniform distribution, runif() and dunif().mp4
    04:33
  • 2. Mean and standard deviation of the uniform distribution.mp4
    00:58
  • 3. punif().mp4
    01:26
  • 4. qunif() and the inverse transform method.mp4
    05:01
  • 5. punif() and qunif() coding exercise.html
  • 6. Inverse transform coding exercise.html
  • 7. rchisq(), pchisq(), qchisq().html
  • 8. table().html
  • 9. chi-square goodness of fit test by hand.html
  • 10. chisq.test.html
  • 11. aov().html
  • 12. filter().html
  • 13. select().html
  • 14. glm().html
  • 15. accuracy.html
  • 16. precision and recall.html
  • 17. 1 sample t test by hand.html
  • 18. t.test() one sample.html
  • 19. 1 mean t interval.html
  • 20. 1 proportion interval, binom.test, prop.test.html
  • 21. lm().html
  • 22. predict.html
  • 23. MSE.html
  • Description


    A former Google data scientist teaches you R starting with the basics, and learning common tools for data science.

    What You'll Learn?


    • Master the basic parts of R like vectors and matrices
    • Learn more complex data structures like data frames and lists
    • Learn R's probability functions for simulating data and calculating probabilities
    • Practice these skills using Udemy's built-in coding exercises

    Who is this for?


  • Aspiring data analysts or data scientists who want to learn R
  • What You Need to Know?


  • Some experience in programming or statistics is helpful, but no prior knowledge is assumed.
  • More details


    Description

    This comprehensive R course starts from the very basics, covering vectors, matrices, data frames, and more, ensuring a solid foundation for beginners.

    Start your journey to becoming an R expert today!


    Key Features:

    • Learn R from scratch with a step-by-step approach

    • Hands-on exercises for practical experience

    • Understand data structures and data manipulation in R:

      • Vectors

      • Matrices

      • Data frames

      • Lists

      • Subsetting data

      • apply() functions on matrices

    • Learn about probability distributions and R's tools for probability.

      • r functions for generating random variables

      • d functions for finding the probability of single events

      • p functions for finding cumulative probabilities

      • q functions for finding percentiles

    • Learn about common probability distributions commonly used in data science, including the binomial, geometric, exponential, normal, Poisson, gamma, and uniform distributions.

    • Lifetime access to course materials and updates


    Target audience and pre-requisites:

    This course is designed for all levels, and assumes no prior knowledge of R.  Some experience programming or analyzing data is helpful, but we will build all knowledge from scratch! 

    Some sections, especially in the second half of the course, will assume a foundation in basic algebra and arithmetic.


    Start with the fundamentals of R programming, and gain proficiency in R to position yourself as a skilled data scientist.

    Who this course is for:

    • Aspiring data analysts or data scientists who want to learn R

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    I am a statistician,  data scientist, and teacher.  I've worked as a data scientist at Google, where I analyzed data from over 1 billion users, and I've created new methods for analyzing genetic sequencing data.  But most importantly, I love helping others learn statistics and have been teaching at top universities and online for over ten years.  My goal is to help you obtain a deep understanding of statistics and to make it as easy as possible!
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 96
    • duration 5:53:07
    • Release Date 2024/05/18