Companies Home Search Profile

Machine Learning Practical Course

Focused View

Onesinus Tamba

5:06:58

6 View
  • 1. Introduction.mp4
    00:48
  • 2. What exactly machine learning is.mp4
    06:26
  • 3. Machine Learning Types.mp4
    05:00
  • 4. ML Tools.mp4
    05:47
  • 1. Dataset Repository.mp4
    03:06
  • 2.1 Load Dataset Source Code Example.html
  • 2. Load the dataset.mp4
    08:41
  • 3.1 Basic Commands.html
  • 3. Basic Commands Data Preparation.mp4
    04:31
  • 4.1 Basic Visualization Source Code.html
  • 4. Basic Data Visualization.mp4
    11:26
  • 5.1 Test Train Split Source Code Example.html
  • 5. Train Test Split.mp4
    11:30
  • 6.1 Source Code Algorithm Implementation.html
  • 6. Algorithms implementation.mp4
    10:40
  • 1. Decision Tree Classification.mp4
    08:01
  • 2.1 Algorithms executor source code.html
  • 2. Support Vector Classification.mp4
    10:11
  • 3. Random Forest Classification.mp4
    06:12
  • 4.1 XGB + Label Encoding.html
  • 4. Xgb Classification.mp4
    07:46
  • 5. Gradient Boosting Classification.mp4
    03:44
  • 6. Neural Network Classification.mp4
    05:28
  • 7. Logistic Regression & KNN.mp4
    04:26
  • 8.1 All codes for this session.html
  • 8. Add other performance metrics.mp4
    08:13
  • 1. Introduction.mp4
    01:26
  • 2. Intrusion Detection System.mp4
    02:11
  • 3. Quick review about dataset.mp4
    03:46
  • 4. Load the Dataset.mp4
    04:37
  • 5.1 Feature Names List.html
  • 5. Define features name.mp4
    09:31
  • 6. Dataframe info and describe.mp4
    01:24
  • 7.1 Set Class Value.html
  • 7. Data preprocessing - set class values.mp4
    02:56
  • 8.1 Pie Plot Code Example.html
  • 8. Pie Plot to know the data distribution.mp4
    06:56
  • 9.1 Data Scaling with RobustScaler Code Example.html
  • 9. Data Preprocessing - Scaling the data with RobustScaler.mp4
    14:06
  • 10.1 Define features and target.html
  • 10. Define x and y variable.mp4
    01:53
  • 11.1 PCA Code Example.html
  • 11. Principal Component Analysis (PCA) - Feature Selection.mp4
    08:44
  • 12.1 Test Train Split Code Example.html
  • 12. Splitting data for training and testing phase.mp4
    07:36
  • 13.1 Classifiers Executor Code Example.html
  • 13. Create a method as classifier executor.mp4
    17:42
  • 14.1 The implementation of algorithms example.html
  • 14. Classifiers Algorithms implementation.mp4
    16:26
  • 15.1 Feature Importances Code Example.html
  • 15. Create a method to list down features importance.mp4
    11:01
  • 16.1 Plot Tree Code Example.html
  • 16. Plot tree.mp4
    04:11
  • 17.1 Random Forest Code Example.html
  • 17. Other Algorithms - Random Forest.mp4
    03:24
  • 18.1 Source Code Example of XGboost Regressor, Classifier, Mathplotlib Legend.html
  • 18. XGBoost (Regressor, Classifier, Plot Legend Actual vs Predicted value).mp4
    13:41
  • 19.1 Use Reduced Data.html
  • 19. The use of reduced data.mp4
    04:11
  • 20.1 Metrics Performances value display in bar chart.html
  • 20. All Algorithms score comparison in bar chart.mp4
    08:23
  • 21.1 Save, load data and model then make a new prediction.html
  • 21. Load saved input and model then making new prediction.mp4
    10:07
  • 22.1 Source Code Example of Cross Validation (CV).html
  • 22. Cross Validation.mp4
    06:04
  • 23.1 Grid Search CV Code Example.html
  • 23. Gridsearch CV.mp4
    07:02
  • 1. Clustering.mp4
    01:56
  • 2. K-Means.mp4
    01:23
  • 3. Bias and Variance.mp4
    03:41
  • 4. Bootstrap Aggregating (Bagging).mp4
    02:56
  • 5. Boosting.mp4
    02:41
  • 6. Ensemble Modeling.mp4
    02:56
  • 7. Model Optimization.mp4
    02:11
  • Description


    Learn Machine Learning using PYTHON and SKLEARN

    What You'll Learn?


    • Python for Machine Learning
    • Machine Learning
    • Basic Data Science
    • Hands-on ML
    • Case Study (Intrusion Detection System)
    • Case Study (Missing Data Imputation)

    Who is this for?


  • Anyone who wants to learn machine learning practically
  • What You Need to Know?


  • Basic Python Coding Skill
  • More details


    Description

    Python, Machine Learning, Scikit Learn, Algorithms, Classification, Machine Learning Case Study, Dataset, Machine Learning Techniques, Machine Learning Terms, Google Collab


    Welcome to our innovative and practical Python-based machine learning course! This course is specifically designed to equip you with the skills needed for developing intrusion detection systems using machine learning technology. With a primary focus on the Python programming language and leveraging the scikit-learn (sklearn) library, this course provides a robust foundation for understanding machine learning concepts and their real-world applications.


    You will gain expertise in implementing machine learning techniques using the scikit-learn library, delving into profound insights from the Intrusion Detection System dataset, which serves as the primary case study. Throughout the course, you'll develop a deep understanding of machine learning algorithms, data preprocessing, and model evaluation, learning how to apply these concepts effectively in the context of intrusion detection.


    Combining structured theory and hands-on labs, this course not only enhances your knowledge of machine learning but also instills confidence to tackle professional challenges. The certificate earned upon completion adds significant value to your profile. Join now to seize better career opportunities in the field of machine learning and become an expert in intrusion detection using Python and scikit-learn.


    Important Note:  Every codes we will practice in this course can you get on Resources section, find the source code link for every video that contains code

    Thank You.

    Who this course is for:

    • Anyone who wants to learn machine learning practically

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Onesinus Tamba
    Onesinus Tamba
    Instructor's Courses
    Onesinus Saut Parulian is a practitioner in the IT field, specifically in the field of software development since 2015. His educational background was in computer and network engineering at a vocational high school which was then continued with a major in informatics engineering. has a hobby of writing ebooks and sharing knowledge. He really likes the field of programming, making the author continue his postgraduate education in the field of computer science in 2023 while continuing his professional career as an Engineering Manager at a startup.--Onesinus Saut Parulian adalah seorang praktisi di bidang IT secara spesifik di bidang software development sejak tahun 2015. Latar belakang pendidikan teknik komputer dan jaringan pada sekolah menengah kejuruan yang kemudian dilanjutkan dengan jurusan teknik informatika. memiliki hobi menulis ebook dan berbagi pengetahuan. Sangat menyukai bidang programming menjadikan penulis melanjutkan pendidikan pascasarjana di bidang ilmu komputer pada tahun 2023 ini sambil terus melanjutkan perjalanan karir profesional sebagai Engineering Manager di salah satu startup.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 48
    • duration 5:06:58
    • Release Date 2024/05/18