Machine Learning For Absolute Beginners 3 Levels
Focused View
9:09:03
9 View
01-Welcome!.mp4
06:38
02-Artificial Intelligence (AI) - The Future.mp4
04:22
03-Artificial Intelligence (AI).mp4
06:14
04-Classical Programming.mp4
03:13
05-Machine Learning (ML).mp4
07:13
06-Deep Learning.mp4
07:51
07-Applied versus Generalized Artificial Intelligence (AI).mp4
04:19
08-Why Do We Need AI Today.mp4
09:21
09-Machine Learning (ML) Terminology.mp4
01:20
10-The Black Box Metaphor.mp4
03:04
11-Features and Labels.mp4
05:09
12-Training a Model.mp4
04:49
13-Aiming for Generalization.mp4
11:23
14-The Degree of Supervision.mp4
01:45
15-Supervised Learning.mp4
06:16
16-Classification.mp4
05:23
17-Regression.mp4
07:13
18-Unsupervised Learning.mp4
03:40
19-Clustering.mp4
05:09
20-Dimension Reduction.mp4
05:48
21-Reinforcement Learning.mp4
05:57
22-Decision-making Agent.mp4
07:04
23-Lets Recap and Thank You!.mp4
06:40
01-Welcome.mp4
02:19
02-Anaconda Installation.mp4
04:22
03-Jupyter Lab Overview.mp4
03:51
04-Working with a Jupyter Notebook.mp4
14:16
05-Overview.mp4
02:52
06-Variables and Data Types.mp4
07:22
07-Strings.mp4
07:44
08-Lists.mp4
09:44
09-The if and for Loop Statements.mp4
07:08
10-Functions.mp4
07:59
11-Dictionaries.mp4
11:01
12-Classes, Objects, Attributes, and Methods.mp4
07:28
13-Importing Modules.mp4
07:34
14-Libraries for Data Science Projects.mp4
07:03
15-Exercise 1- Python Fundamentals.mp4
00:33
16-Overview.mp4
02:59
17-Series Data Structure (1D).mp4
12:41
18-DataFrame Data Structure (2D).mp4
04:52
19-Data Selection in a Dataframe.mp4
14:55
20-Exercise 2 pandas Series and Dataframe.mp4
00:34
21-Overview.mp4
01:14
22-Kaggle and the Titanic Dataset.mp4
05:48
23-Loading Tabular Data File.mp4
06:35
24-Adjusting the Loading Parameters.mp4
13:06
25-Previewing the DataFrame.mp4
08:14
26-Using Summary Statistics.mp4
04:48
27-The Concept of Methods Chaining.mp4
05:17
28-Sorting and Ranking.mp4
03:13
29-Filtering.mp4
04:53
30-Grouping.mp4
04:52
31-Exercise 3 - Data Loading and Analysis.mp4
00:34
32-Overview.mp4
02:07
33-Removing Columns or Rows.mp4
04:17
34-Removing Duplicate Rows.mp4
08:37
35-Renaming Column Labels.mp4
03:32
36-Dropping Missing Values.mp4
07:29
37-Filling-in Missing Values.mp4
03:32
38-Creating Dummy Variables.mp4
08:16
39-Exporting Data into Files.mp4
02:39
40-Exercise 4 - Data Cleaning and Transformation.mp4
00:27
41-Recap and Thank You.mp4
02:45
01-Welcome.mp4
03:22
02-Our Overall Learning Path.mp4
02:13
03-How to Practice.mp4
02:31
04-Data Visualization - Overview.mp4
02:11
05-Matplotlib - Overview.mp4
08:23
06-Matplotlib - Figures and Axes.mp4
03:23
07-Matplotlib - The Object-Oriented (OO) and Pyplot Interfaces.mp4
06:59
08-Matplotlib - APIs Reference Review.mp4
05:37
09-Seaborn - Overview.mp4
03:50
10-Seaborn - Figure-level and Axes-level Functions.mp4
06:21
11-Seaborn - Chart Customization.mp4
04:44
12-Seaborn - The API Reference Review.mp4
04:00
13-A Little Bit about NumPy.mp4
06:40
14-The Right Chart for the Right Job.mp4
02:50
15-Ranking and Proportion Charts - An Overview.mp4
01:20
16-Bar Chart.mp4
10:20
17-Grouped Bar Chart.mp4
09:07
18-Lollipop Chart.mp4
04:04
19-Stacked Bar Chart.mp4
03:34
20-Pie Chart.mp4
03:51
21-Treemap.mp4
06:25
22-Optimizing Colors.mp4
06:32
23-Trend and Distribution Charts - Overview.mp4
01:56
24-Line Chart.mp4
06:59
25-Area Chart.mp4
01:58
26-Stacked Area Chart.mp4
03:43
27-Histogram Chart.mp4
06:43
28-Density Curve Chart.mp4
05:38
29-Box-and-Whisker Chart.mp4
09:30
30-Bee-swarm Chart.mp4
02:30
31-Correlation Charts - Overview.mp4
02:41
32-Scatter Chart.mp4
10:26
33-Correlogram.mp4
03:29
34-Heat Map.mp4
08:34
35-Hexbin Map.mp4
04:21
36-Lets Recap and Thank You.mp4
02:55
More details
User Reviews
Rating
average 0
Focused display
Category

PacktPub
View courses PacktPubPackt is a publishing company founded in 2003 headquartered in Birmingham, UK, with offices in Mumbai, India. Packt primarily publishes print and electronic books and videos relating to information technology, including programming, web design, data analysis and hardware.
- language english
- Training sessions 100
- duration 9:09:03
- Release Date 2024/03/15