Machine Learning Book camp Video Edition
Focused View
8:59:20
49 View
1 - Chapter 1 Introduction to machine learning.mp4
12:39
2 - Chapter 1 When machine learning isnt helpful.mp4
11:32
3 - Chapter 1 Evaluation.mp4
11:22
4 - Chapter 2 Machine learning for regression.mp4
06:43
5 - Chapter 2 Exploratory data analysis.mp4
08:25
6 - Chapter 2 Target variable analysis.mp4
09:35
7 - Chapter 2 Machine learning for regression - again.mp4
10:24
8 - Chapter 2 Linear regression.mp4
09:35
9 - Chapter 2 Predicting the price.mp4
10:18
10 - Chapter 2 Validating the model.mp4
12:20
11 - Chapter 2 Regularization.mp4
07:35
12 - Chapter 2 Using the model.mp4
06:07
13 - Chapter 3 Machine learning for classification.mp4
11:24
14 - Chapter 3 Initial data preparation.mp4
10:37
15 - Chapter 3 Feature importance, Part 1.mp4
09:53
16 - Chapter 3 Feature importance, Part 2.mp4
06:45
17 - Chapter 3 Feature engineering.mp4
08:02
18 - Chapter 3 Machine learning for classification.mp4
06:05
19 - Chapter 3 Training logistic regression.mp4
10:10
20 - Chapter 3 Model interpretation.mp4
12:37
21 - Chapter 3 Using the model.mp4
10:05
22 - Chapter 4 Evaluation metrics for classification.mp4
10:28
23 - Chapter 4 Confusion table.mp4
11:07
24 - Chapter 4 Precision and recall.mp4
06:07
25 - Chapter 4 ROC curve and AUC score.mp4
12:46
26 - Chapter 4 ROC Curve.mp4
11:07
27 - Chapter 4 Parameter tuning.mp4
06:43
28 - Chapter 4 Next steps.mp4
08:08
29 - Chapter 5 Deploying machine learning models.mp4
08:51
30 - Chapter 5 Model serving.mp4
10:55
31 - Chapter 5 Managing dependencies.mp4
08:22
32 - Chapter 5 Docker.mp4
07:10
33 - Chapter 5 Deployment.mp4
09:12
34 - Chapter 6 Decision trees and ensemble learning.mp4
05:32
35 - Chapter 6 Data cleaning.mp4
10:34
36 - Chapter 6 Decision trees.mp4
10:35
37 - Chapter 6 Decision tree learning algorithm.mp4
08:56
38 - Chapter 6 Random forest.mp4
08:28
39 - Chapter 6 Gradient boosting.mp4
06:55
40 - Chapter 6 Parameter tuning for XGBoost.mp4
11:59
41 - Chapter 6 Next steps.mp4
06:12
42 - Chapter 7 Neural networks and deep learning.mp4
10:53
43 - Chapter 7 Convolutional neural networks.mp4
06:31
44 - Chapter 7 Internals of the model.mp4
07:05
45 - Chapter 7 Training the model.mp4
07:31
46 - Chapter 7 Training the model - again.mp4
08:55
47 - Chapter 7 Saving the model and checkpointing.mp4
10:22
48 - Chapter 7 Data augmentation.mp4
08:48
49 - Chapter 7 Using the model.mp4
10:11
50 - Chapter 8 Serverless deep learning.mp4
12:42
51 - Chapter 8 Preparing the Docker image.mp4
12:57
52 - Chapter 9 Serving models with Kubernetes and Kubeflow.mp4
10:18
53 - Chapter 9 Running TensorFlow Serving locally.mp4
12:25
54 - Chapter 9 Model deployment with Kubernetes.mp4
12:12
55 - Chapter 9 Deploying to Kubernetes.mp4
10:30
56 - Chapter 9 Model deployment with Kubeflow.mp4
07:22
57 - Chapter 9 KFServing transformers.mp4
08:18
More details
User Reviews
Rating
average 0
Focused display
Category

O'Reilly
View courses O'ReillyO'Reilly Media is an American learning company established by Tim O'Reilly that publishes books, produces tech conferences, and provides an online learning platform. Its distinctive brand features a woodcut of an animal on many of its book covers.
- language english
- Training sessions 57
- duration 8:59:20
- Release Date 2023/11/06