Linear Algebra for Machine Learning
Focused View
6:32:20
88 View
01-Topics.mp4
00:33
02-Topics.mp4
00:37
03-3.1 Tensor Transposition.mp4
03:37
04-3.5 Exercises.mp4
05:38
05-3.2 Basic Tensor Arithmetic.mp4
05:56
06-Topics.mp4
00:24
07-5.4 Exercises.mp4
08:31
08-6.4 Orthogonal Matrices.mp4
04:23
09-6.2 Matrix Inversion.mp4
16:15
10-Topics.mp4
00:26
11-Topics.mp4
00:43
12-1.1 Defining Linear Algebra.mp4
06:35
13-1.5 Exercise.mp4
08:49
14-4.1 The Substitution Strategy.mp4
03:40
15-4.2 Substitution Exercises.mp4
08:41
16-4.4 Elimination Exercises.mp4
09:49
17-Topics.mp4
00:40
18-5.3 Symmetric and Identity Matrices.mp4
05:13
19-7.4 High-Dimensional Eigenvectors.mp4
03:54
20-1.2 Solving a System of Equations Algebraically.mp4
06:42
21-Linear Algebra for Machine Learning (Machine Learning Foundations) - Introduction.mp4
02:54
22-1.3 Linear Algebra in Machine Learning and Deep Learning.mp4
10:51
23-2.1 Tensors.mp4
04:35
24-2.7 Generic Tensor Notation.mp4
04:46
25-2.3 Vectors and Vector Transposition.mp4
11:15
26-Topics.mp4
00:21
27-3.3 Reduction.mp4
04:39
28-2.4 Norms and Unit Vectors.mp4
15:35
29-2.5 Basis, Orthogonal, and Orthonormal Vectors.mp4
04:47
30-4.3 The Elimination Strategy.mp4
04:10
31-5.2 Matrix-by-Matrix Multiplication.mp4
09:44
32-5.1 Matrix-by-Vector Multiplication.mp4
12:01
33-3.4 The Dot Product.mp4
06:04
34-5.5 Machine Learning and Deep Learning Applications.mp4
11:45
35-6.1 The Frobenius Norm.mp4
03:39
36-7.1 The Eigenconcept.mp4
09:00
37-6.3 Diagonal Matrices.mp4
03:41
38-7.2 Exercises.mp4
09:29
39-8.1 The Determinant of a 2 x 2 Matrix.mp4
06:02
40-Topics.mp4
00:38
41-8.3 Exercises.mp4
03:59
42-8.2 The Determinants of Larger Matrices.mp4
07:18
43-8.4 Determinants and Eigenvalues.mp4
08:43
44-9.4 Regression via Pseudoinversion.mp4
12:47
45-9.2 Media File Compression.mp4
06:57
46-9.1 Singular Value Decomposition.mp4
08:09
47-9.3 The Moore-Penrose Pseudoinverse.mp4
08:44
48-9.6 Resources for Further Study of Linear Algebra.mp4
03:54
49-1.4 Historical and Contemporary Applications.mp4
07:36
50-2.2 Scalars.mp4
23:03
51-2.6 Matrices.mp4
07:39
52-2.8 Exercises.mp4
02:11
53-Topics.mp4
00:24
54-6.5 The Trace Operator.mp4
03:45
55-7.3 Eigenvectors in Python.mp4
28:00
56-8.5 Eigendecomposition.mp4
14:01
57-Linear Algebra for Machine Learning (Machine Learning Foundations) - Summary.mp4
01:11
58-9.5 Principal Component Analysis.mp4
06:57
More details
User Reviews
Rating
average 0
Focused display
Category

LiveLessons
View courses LiveLessonsPearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
- language english
- Training sessions 58
- duration 6:32:20
- Release Date 2023/11/04