Companies Home Search Profile

Linear Algebra for Machine Learning

Focused View

6:32:20

88 View
  • 01-Topics.mp4
    00:33
  • 02-Topics.mp4
    00:37
  • 03-3.1 Tensor Transposition.mp4
    03:37
  • 04-3.5 Exercises.mp4
    05:38
  • 05-3.2 Basic Tensor Arithmetic.mp4
    05:56
  • 06-Topics.mp4
    00:24
  • 07-5.4 Exercises.mp4
    08:31
  • 08-6.4 Orthogonal Matrices.mp4
    04:23
  • 09-6.2 Matrix Inversion.mp4
    16:15
  • 10-Topics.mp4
    00:26
  • 11-Topics.mp4
    00:43
  • 12-1.1 Defining Linear Algebra.mp4
    06:35
  • 13-1.5 Exercise.mp4
    08:49
  • 14-4.1 The Substitution Strategy.mp4
    03:40
  • 15-4.2 Substitution Exercises.mp4
    08:41
  • 16-4.4 Elimination Exercises.mp4
    09:49
  • 17-Topics.mp4
    00:40
  • 18-5.3 Symmetric and Identity Matrices.mp4
    05:13
  • 19-7.4 High-Dimensional Eigenvectors.mp4
    03:54
  • 20-1.2 Solving a System of Equations Algebraically.mp4
    06:42
  • 21-Linear Algebra for Machine Learning (Machine Learning Foundations) - Introduction.mp4
    02:54
  • 22-1.3 Linear Algebra in Machine Learning and Deep Learning.mp4
    10:51
  • 23-2.1 Tensors.mp4
    04:35
  • 24-2.7 Generic Tensor Notation.mp4
    04:46
  • 25-2.3 Vectors and Vector Transposition.mp4
    11:15
  • 26-Topics.mp4
    00:21
  • 27-3.3 Reduction.mp4
    04:39
  • 28-2.4 Norms and Unit Vectors.mp4
    15:35
  • 29-2.5 Basis, Orthogonal, and Orthonormal Vectors.mp4
    04:47
  • 30-4.3 The Elimination Strategy.mp4
    04:10
  • 31-5.2 Matrix-by-Matrix Multiplication.mp4
    09:44
  • 32-5.1 Matrix-by-Vector Multiplication.mp4
    12:01
  • 33-3.4 The Dot Product.mp4
    06:04
  • 34-5.5 Machine Learning and Deep Learning Applications.mp4
    11:45
  • 35-6.1 The Frobenius Norm.mp4
    03:39
  • 36-7.1 The Eigenconcept.mp4
    09:00
  • 37-6.3 Diagonal Matrices.mp4
    03:41
  • 38-7.2 Exercises.mp4
    09:29
  • 39-8.1 The Determinant of a 2 x 2 Matrix.mp4
    06:02
  • 40-Topics.mp4
    00:38
  • 41-8.3 Exercises.mp4
    03:59
  • 42-8.2 The Determinants of Larger Matrices.mp4
    07:18
  • 43-8.4 Determinants and Eigenvalues.mp4
    08:43
  • 44-9.4 Regression via Pseudoinversion.mp4
    12:47
  • 45-9.2 Media File Compression.mp4
    06:57
  • 46-9.1 Singular Value Decomposition.mp4
    08:09
  • 47-9.3 The Moore-Penrose Pseudoinverse.mp4
    08:44
  • 48-9.6 Resources for Further Study of Linear Algebra.mp4
    03:54
  • 49-1.4 Historical and Contemporary Applications.mp4
    07:36
  • 50-2.2 Scalars.mp4
    23:03
  • 51-2.6 Matrices.mp4
    07:39
  • 52-2.8 Exercises.mp4
    02:11
  • 53-Topics.mp4
    00:24
  • 54-6.5 The Trace Operator.mp4
    03:45
  • 55-7.3 Eigenvectors in Python.mp4
    28:00
  • 56-8.5 Eigendecomposition.mp4
    14:01
  • 57-Linear Algebra for Machine Learning (Machine Learning Foundations) - Summary.mp4
    01:11
  • 58-9.5 Principal Component Analysis.mp4
    06:57
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Pearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
    • language english
    • Training sessions 58
    • duration 6:32:20
    • Release Date 2023/11/04