Companies Home Search Profile

Linear Algebra for Data Science and Machine Learning using R

Focused View

Syed Mohiuddin

9:45:06

157 View
  • 1. What you are going to learn in this course.mp4
    02:47
  • 2.1 Notes - Introduction.pdf
  • 2. Introduction.mp4
    01:47
  • 3.1 Notes - What is Linear Algebra.pdf
  • 3. What is Linear Algebra.mp4
    01:10
  • 4.1 Notes - Why Linear Algebra.pdf
  • 4. Why Linear Algebra.mp4
    00:56
  • 1. Installing R Software.mp4
    04:34
  • 2. Installing RStudio.mp4
    03:12
  • 3. Look around RStudio Interface.mp4
    09:07
  • 4. Help & Examples Facility for R Features and Functions.mp4
    02:51
  • 5. Changing Look and Feel of RStudio.mp4
    01:40
  • 6. Some General Functions Good to Know.mp4
    04:38
  • 7. Writing R Program using RGui.mp4
    04:14
  • 8. Writing R Program using RStudio.mp4
    04:21
  • 9. Using Comments in R Scripts.mp4
    01:37
  • 1.1 Notes - Scalars and Vectors.pdf
  • 1. Scalars and Vectors.mp4
    07:42
  • 2. Vectors.html
  • 3.1 Notes - Vectors in 2-Dimensional Space.pdf
  • 3. Vectors in 2-Dimensional Space.mp4
    04:32
  • 4. Vectors.html
  • 5.1 Notes - Vectors in 3-Dimensional Space.pdf
  • 5. Vectors in 3-Dimensional Space.mp4
    02:41
  • 6.1 Notes - Vectors with n-Components.pdf
  • 6. Vectors with n-Components.mp4
    03:20
  • 7.1 creatingvectors.zip
  • 7. R Code - Creating Vectors.mp4
    12:35
  • 8. Creating Vectors.html
  • 9. Practice #1.html
  • 10.1 creatingvectorsusingsequences.zip
  • 10. R Code - Create Vectors using Sequence Operator & Function.mp4
    09:25
  • 11. Creating Vectors using Sequence.html
  • 12.1 accessingmodifyingvectors.zip
  • 12. R Code - Accessing & Modifying Vectors.mp4
    07:24
  • 13. Accessing & Modifying Vectors.html
  • 14.1 Notes - Zero and Ones Vectors.pdf
  • 14. Zero and Ones Vectors.mp4
    02:04
  • 15. Zero and Ones Vectors.html
  • 16.1 zeroonesvector.zip
  • 16. R Code - Zero and Ones Vector.mp4
    04:20
  • 17. Zero and Ones Vectors.html
  • 18.1 Quiz Solutions - Vectors.pdf
  • 18. Quiz Solutions.html
  • 1.1 Notes - Vector Addition.pdf
  • 1. Vector Addition.mp4
    04:16
  • 2.1 vectoraddition.zip
  • 2. R Code - Vector Addition.mp4
    03:33
  • 3. Vector Addition.html
  • 4.1 Notes - Vector Scalar Multiplication.pdf
  • 4. Scalar Multiplication.mp4
    04:55
  • 5.1 scalarmultiplication.zip
  • 5. R Code - Scalar Multiplication.mp4
    04:14
  • 6. Scalar Multiplication.html
  • 7.1 Notes - Vector Properties.pdf
  • 7. Vector Properties.mp4
    02:45
  • 8. Vector Properties.html
  • 9.1 Notes - Linear Combinations of Vectors.pdf
  • 9. Linear Combinations of Vectors.mp4
    02:05
  • 10.1 linearcombination.zip
  • 10. R Code - Linear Combinations of Vectors.mp4
    02:00
  • 11. Linear Combination.html
  • 12.1 Notes - Vector Transpose.pdf
  • 12. Vector Transpose.mp4
    02:19
  • 13.1 vectortranspose.zip
  • 13. R Code - Vector Transpose.mp4
    01:22
  • 14. Vector Transpose.html
  • 15.1 Notes - Dot Product or Inner Product.pdf
  • 15. Dot Product or Inner Product.mp4
    05:56
  • 16.1 dotproduct.zip
  • 16. R Code - Dot Product.mp4
    06:54
  • 17. Dot Product.html
  • 18.1 Notes - Outer Product.pdf
  • 18. Outer Product.mp4
    07:18
  • 19.1 outerproduct.zip
  • 19. R Code - Outer Product.mp4
    04:45
  • 20. Outer Product.html
  • 21.1 Quiz Solutions - Operations on Vectors.pdf
  • 21. Quiz Solutions.html
  • 1.1 Notes - Matrices - Context of Data Science.pdf
  • 1. Matrices - Context of Data Science.mp4
    04:10
  • 2. Martrices.html
  • 3.1 Notes - Dimension or Size.pdf
  • 3. Dimension or Size.mp4
    04:23
  • 4.1 creatingmatrices.zip
  • 4. R Code - Creating Matrices.mp4
    05:53
  • 5.1 matrixfunctions.zip
  • 5. R Code - Matrix Functions.mp4
    01:55
  • 6. Matrices.html
  • 7.1 namingrowscolumns.zip
  • 7. R Code - Naming Rows and Columns of Matrix.mp4
    03:12
  • 8.1 accessingmodifyingelements.zip
  • 8. R Code - Accessing and Modifying Elements of Matrix.mp4
    03:42
  • 9.1 appendingrowscolumns.zip
  • 9. R Code - Appending Rows and Columns.mp4
    04:24
  • 10.1 deletingrowscolumns.zip
  • 10. R Code - Deleting Rows and Columns of Matrix.mp4
    03:10
  • 11.1 creatingmatrixusingrbindcbind.zip
  • 11. R Code - Creating Matrix using rbind() and cbind().mp4
    02:53
  • 12.1 Notes - Matrix Transpose.pdf
  • 12. Matrix Transpose.mp4
    04:41
  • 13.1 matrixtranspose.zip
  • 13. R Code - Matrix Transpose.mp4
    02:18
  • 14. Matrix Transpose.html
  • 15.1 Notes - Symmetric Matrix.pdf
  • 15. Symmetric Matrix.mp4
    04:25
  • 16.1 symmetricmatrix.zip
  • 16. R Code - Symmetric Matrix.mp4
    05:23
  • 17. Symmetric Matrices.html
  • 18.1 Notes - Identity Matrices.pdf
  • 18. Identity Matrices.mp4
    01:42
  • 19.1 identitymatrices.zip
  • 19. R Code - Identity Matrices.mp4
    02:55
  • 20. Identity Matices.html
  • 21.1 Notes - Diagonal Matrix.pdf
  • 21. Diagonal Matrix.mp4
    02:00
  • 22.1 diagonalmatrix.zip
  • 22. R Code - Diagonal Matrix.mp4
    04:12
  • 23. Diagonal Matrices.html
  • 24.1 Notes - Triangular Matrix.pdf
  • 24. Triangular Matrix.mp4
    01:37
  • 25. Triangular Matrix.html
  • 26.1 Notes - Zero and Ones Matrix.pdf
  • 26. Zero and Ones Matrix.mp4
    02:04
  • 27.1 zeroonesmatrix.zip
  • 27. R Code - Zero and Ones Matrix.mp4
    02:43
  • 28. Zero and Ones Matrix.html
  • 29.1 Quiz Solutions - Matrices.pdf
  • 29. Quiz Solutions.html
  • 1.1 Notes - Matrix Addition.pdf
  • 1. Matrix Addition.mp4
    05:32
  • 2.1 matrixsums.zip
  • 2. R Code - Matrix Addition.mp4
    02:50
  • 3. Matrix Addition.html
  • 4.1 Notes - Scalar Multiplication.pdf
  • 4. Scalar Multiplication.mp4
    04:12
  • 5.1 scalarmultiplication.zip
  • 5. R Code - Scalar Multiplication.mp4
    02:05
  • 6. Scalar Multiplication.html
  • 7.1 Notes - Hadamard Product.pdf
  • 7. Hadamard Product.mp4
    05:38
  • 8.1 hadamardproduct.zip
  • 8. R Code - Hadamard Product.mp4
    02:51
  • 9. Hadamard Product.html
  • 10.1 Notes - Trace of Matrix.pdf
  • 10. Trace of Matrix.mp4
    02:39
  • 11.1 matrixtrace.zip
  • 11. R Code - Trace of Matrix.mp4
    03:03
  • 12. Matrix Trace.html
  • 13.1 Notes - Matrix Multiplication.pdf
  • 13. Matrix Multiplication.mp4
    05:21
  • 14.1 matrixmultiplication.zip
  • 14. R Code - Matrix Multiplication.mp4
    03:14
  • 15. Matrix Multiplication.html
  • 16.1 Notes - Properties of Matrix Operations.pdf
  • 16. Properties of Matrix Operations.mp4
    04:09
  • 17.1 Notes - Matrix Power.pdf
  • 17. Matrix Power.mp4
    01:23
  • 18.1 matrixpower.zip
  • 18. R Code - Matrix Power.mp4
    04:00
  • 19. Matrix Power.html
  • 20.1 Notes - Diagonal Matrix Multiplication.pdf
  • 20. Diagonal Matrix Multiplication.mp4
    06:04
  • 21.1 diagonalmatrixmultiplication.zip
  • 21. R Code - Diagonal Matrix Multiplication.mp4
    04:55
  • 22.1 Quiz Solutions - Operations on Matrices.pdf
  • 22. Quiz Solutions.html
  • 1.1 Notes - Determinants.pdf
  • 1. Determinants.mp4
    07:37
  • 2.1 determinants.zip
  • 2. R Code - Determinants.mp4
    04:35
  • 3. Determinants.html
  • 4.1 Notes - Properties of Determinants.pdf
  • 4. Properties of Determinants.mp4
    01:15
  • 5. Determinants.html
  • 6.1 Notes - Inverse of Matrix.pdf
  • 6. Inverse of Matrix.mp4
    04:01
  • 7.1 matrixinverse.zip
  • 7. R Code - Matrix Inverse.mp4
    03:18
  • 8. Matrix Inverse.html
  • 9.1 Notes - Singular and Invertible Matrices.pdf
  • 9. Singular and Invertible Matrices.mp4
    01:10
  • 10.1 singularmatrices.zip
  • 10. R Code - Singular Matrices.mp4
    04:17
  • 11. Singular Matrix.html
  • 12.1 Notes - Properties of Inverse.pdf
  • 12. Properties of Inverse.mp4
    01:54
  • 13. Properties of Inverse.html
  • 14.1 Quiz Solutions - Matrix Determinant and Inverse.pdf
  • 14. Quiz Solutions.html
  • 1.1 Notes - System of Linear Equations.pdf
  • 1. System of Linear Equations.mp4
    06:41
  • 2. Systems of Linear Equations.html
  • 3.1 Notes - Types of Systems.pdf
  • 3. Types of Systems.mp4
    03:20
  • 4.1 Notes - Matrix Notation.pdf
  • 4. Matrix Notation.mp4
    02:55
  • 5. Matrix Notation.html
  • 6.1 Notes - Elementary Row Operations.pdf
  • 6. Elementary Row Operations.mp4
    06:40
  • 7.1 Notes - Gauss Elimination Method.pdf
  • 7. Gauss Elimination Method.mp4
    09:40
  • 8. Gauss Elimination Method.html
  • 9.1 Notes - Gauss-Jordan Elimination Method.pdf
  • 9. Gauss-Jordan Elimination Method.mp4
    07:00
  • 10.1 gaussjordan.zip
  • 10. R Code - Gauss Jordan Elimination Method.mp4
    05:00
  • 11. Gauss-Jordan Elimination Method.html
  • 12.1 Quiz Solutions - System of Linear Equations.pdf
  • 12. Quiz Solutions.html
  • 1.1 Notes - Matrix Vector Product Ax=b.pdf
  • 1. Matrix Vector Product Ax=b.mp4
    05:25
  • 2. Matrix Vector Product.html
  • 3.1 Notes - Systems of Equations as Linear Combinations.pdf
  • 3. Systems of Equations as Linear Combinations.mp4
    04:32
  • 4.1 Notes - Classification of Matrix Vector Product.pdf
  • 4. Classification of Matrix Vector Product.mp4
    04:21
  • 5.1 Notes - Solving Systems of Linear Equations using Matrix Inverse.pdf
  • 5. Solving Systems of Linear Equations using Matrix Inverse.mp4
    05:23
  • 6.1 solveusinginverse.zip
  • 6. R Code - Solving Systems of Linear Equations using Matrix Inverse.mp4
    06:10
  • 7. Solving Systems of Linear Equations using Matrix Inverse.html
  • 8.1 Notes - Solving Systems of Linear Equations using Cramers Rule.pdf
  • 8. Solving Systems of Linear Equations using Cramers Rule.mp4
    04:21
  • 9.1 cramersrule.zip
  • 9. R Code - Solving Systems of Linear Equations using Cramers Rule.mp4
    06:14
  • 10. Solving Systems of Linear Equations using Cramers Rule.html
  • 11.1 solve.zip
  • 11. R Code - Solving Systems of Linear Equations using qrSolve() function.mp4
    06:17
  • 12. Solving Systems of Linear Equations.html
  • 13.1 Quiz Solutions - Matrix Equation Ax=b.pdf
  • 13. Quiz Solutions.html
  • 1.1 Notes - Lengths and Norms.pdf
  • 1. Lengths and Norms.mp4
    02:10
  • 2.1 Notes - L2 Norm.pdf
  • 2. L2 Norm.mp4
    04:00
  • 3.1 l2norm.zip
  • 3. R Code - L2 Norm.mp4
    04:15
  • 4.1 Notes - L1 Norm.pdf
  • 4. L1 Norm.mp4
    02:35
  • 5.1 l1norm.zip
  • 5. R Code - L1 Norm.mp4
    03:15
  • 6.1 Notes - LP Norm.pdf
  • 6. LP Norm.mp4
    02:15
  • 7.1 lpnorm.zip
  • 7. R Code - LP Norm.mp4
    02:39
  • 8.1 Notes - L-Infinity Norm.pdf
  • 8. L-Infinity Norm.mp4
    02:22
  • 9.1 l-infinitynorm.zip
  • 9. R Code - L Infinity Norm.mp4
    02:30
  • 10. Norms.html
  • 11.1 Quiz Solutions - Norms.pdf
  • 11. Quiz Solutions.html
  • 1.1 Notes - Unit Vectors.pdf
  • 1. Unit Vectors.mp4
    04:48
  • 2.1 unitvectors.zip
  • 2. R Code - Unit Vectors.mp4
    04:21
  • 3.1 Notes - Standard Basis Vectors and Span.pdf
  • 3. Standard Basis Vectors.mp4
    06:09
  • 4.1 Notes - Basis Vectors and Span.pdf
  • 4. Basis Vectors and Span.mp4
    07:20
  • 5. Basis Vectors.html
  • 6.1 Quiz Solutions - Basis Vectors.pdf
  • 6. Quiz Solutions.html
  • 1.1 Notes - Linear Independence.pdf
  • 1. Linear Independence - Introduction.mp4
    05:07
  • 2. Linear Independence.html
  • 3.1 Notes - Linear Independence based on Basis Vectors.pdf
  • 3. Linear Independence based on Basis Vectors.mp4
    02:30
  • 4.1 Notes - Linear Independence based on Determinant or Inverse.pdf
  • 4. Linear Independence based on Determinant or Inverse.mp4
    04:30
  • 5. Linear Independence based on Determinant.html
  • 6.1 Quiz Solutions - Linear Independence.pdf
  • 6. Quiz Solutions.html
  • 1.1 Notes - Vector Subspaces - Introduction.pdf
  • 1. Vector Subspaces - Introduction.mp4
    01:51
  • 2.1 Notes - Null Space.pdf
  • 2. Null Space.mp4
    05:35
  • 3.1 nullspace.zip
  • 3. R Code - Null Space.mp4
    03:45
  • 4.1 Notes - Null Space and Linear Independence.pdf
  • 4. Null Space and Linear Independence.mp4
    05:25
  • 5.1 Notes - Column Space.pdf
  • 5. Column Space.mp4
    03:45
  • 6.1 Notes - Rank and Nullity.pdf
  • 6. Rank and Nullity.mp4
    04:42
  • 7.1 Notes - Rank-Nullity Theorem.pdf
  • 7. Rank-Nullity Theorem.mp4
    02:20
  • 8.1 ranknullity.zip
  • 8. R Code - Rank and Nullity.mp4
    04:45
  • 1.1 Notes - Factorization.pdf
  • 1. Factorization - Introduction.mp4
    00:45
  • 2.1 Notes - LU Factorization.pdf
  • 2. LU Factorization.mp4
    01:18
  • 3. LU Factorization.html
  • 4.1 Notes - Computing LU Factorization.pdf
  • 4. Computing LU Factorization.mp4
    01:28
  • 5.1 lufactorization.zip
  • 5. R Code - LU Factorization.mp4
    04:50
  • 6. LU Factorization.html
  • 7.1 Quiz Solutions - Matrix Factorization.pdf
  • 7. Quiz Solutions.html
  • 1.1 Notes - Orthogonal Vectors.pdf
  • 1. Orthogonal Vectors.mp4
    03:00
  • 2.1 orthogonalvectors.zip
  • 2. R Code - Orthogonal Vectors.mp4
    02:35
  • 3. Orthogonal Vectors.html
  • 4.1 Notes - Orthonormal Vectors.pdf
  • 4. Orthonormal Vectors.mp4
    02:47
  • 5.1 orthonormalvectors.zip
  • 5. R Code - Orthonormal Vectors.mp4
    02:34
  • 6. Orthonormal Vectors.html
  • 7.1 Notes - Orthogonal Matrix.pdf
  • 7. Orthogonal Matrix.mp4
    01:24
  • 8.1 orthogonalmatrix.zip
  • 8. R Code - Orthogonal Matrix.mp4
    05:25
  • 9. Orthogonal Matrix.html
  • 10.1 Quiz Solutions - Orthogonality.pdf
  • 10. Quiz Solutions.html
  • 1.1 Notes - Eigenvalues and Eigenvectors Introduction.pdf
  • 1. Eigenvalues and Eigenvectors - Introduction.mp4
    03:50
  • 2. Eigenvalues from Eigenvectors.html
  • 3.1 Notes - Computing Eigenvalues from Eigenvectors.pdf
  • 3. Computing Eigenvalues from Eigenvectors.mp4
    04:29
  • 4.1 Notes - Computing Eigenvectors from Eigenvalues.pdf
  • 4. Computing Eigenvectors from Eigenvalues.mp4
    03:08
  • 5. Eigenvalues from Eigenvectors.html
  • 6.1 Notes - Characteristic Equation.pdf
  • 6. Characteristic Equation.mp4
    02:54
  • 7.1 computingeigenvalueseigenvectors.zip
  • 7. R Code - Computing Eigenvalues and Eigenvectors.mp4
    05:51
  • 8. Computing Eigenvalues from Eigenvectors.html
  • 9.1 Notes - Eigen Decomposition.pdf
  • 9. Eigen Decomposition.mp4
    05:17
  • 10.1 eigendecomposition.zip
  • 10. R Code - Eigen Decomposition.mp4
    05:05
  • 11. Eigen Decomposition.html
  • 12.1 Notes - Diagonalization.pdf
  • 12. Diagonalization.mp4
    05:00
  • 13.1 diagonalization.zip
  • 13. R Code - Diagonalization.mp4
    03:46
  • 14. Diagonalization.html
  • 15.1 Notes - Few Points - Eigenvalues and Eigenvectors.pdf
  • 15. Few Points - Eigenvalues and Eigenvectors.mp4
    01:03
  • 16.1 Quiz Solutions - Eigenvalues and Eigenvectors.pdf
  • 16. Quiz Solutions.html
  • 1.1 Notes - Singular Value Decomposition - Introduction.pdf
  • 1. Singular Value Decomposition - Introduction.mp4
    02:57
  • 2. Singular Value Decomposition.html
  • 3.1 Notes - Computing Singular Value Decomposition.pdf
  • 3. Steps for Computing SVD.mp4
    01:36
  • 4.1 svd.zip
  • 4. R Code - Singular Value Decomposition - SVD.mp4
    03:47
  • 5. Singular Value Decomposition.html
  • 6.1 Quiz Solutions - Singular Value Decomposition.pdf
  • 6. Quiz Solutions.html
  • 1.1 Notes - Least Squares Problem - Introduction.pdf
  • 1. Least Squares Problem - Introduction.mp4
    04:11
  • 2.1 Notes - Least Squares.pdf
  • 2. Least Squares.mp4
    08:05
  • 3.1 Notes - Solving Least Squares Problems.pdf
  • 3. Solving Least Squares.mp4
    03:12
  • 4.1 leastsquares.zip
  • 4. R Code - Solving Least Squares.mp4
    04:18
  • 1.1 Notes - Moore-Penrose Pseudoinverse.pdf
  • 1. Moore-Penrose Pseudoinverse.mp4
    05:52
  • 2.1 moorepenrose.zip
  • 2. R Code - Moore Penrose Pseudoinverse.mp4
    04:42
  • Description


    Vectors, Matrices, Solving Linear Equations, Factorization, Eigenvectors, Least Squares, SVD

    What You'll Learn?


    • Fundamentals of Linear Algebra
    • Applications of Matrices, Vectors and operations on Matrices and Vectors with implementation in R
    • Solve Systems of Linear Equations and implementation in R
    • Matrix Factorization and implementation in R
    • Computation of Eigenvalues, Eigenvectors and Eigen Decomposition with their implementation in R
    • Solving Least Squares problems
    • Singular Value Decomposition with its implementation in R

    Who is this for?


  • Anyone who is curious about how Linear Algebra is used in Machine Learning
  • Anyone who wants to understand Maths and Linear Algebra behind Data Science
  • Anyone who wants to develop fundamental foundations for deployment of Machine Learning Techniques
  • What You Need to Know?


  • You should have familiarity with fundamentals of Maths
  • All the implementation of Linear Algebra concepts are in R, so familiarity with R will be an added advantage
  • More details


    Description

    This course will help you in understanding of the Linear Algebra and math’s behind Data Science and Machine Learning. Linear Algebra is the fundamental part of Data Science and Machine Learning. This course consists of lessons on each topic of Linear Algebra + the code or implementation of the Linear Algebra concepts or topics.


    There’re tons of topics in this course. To begin the course:

    • We have a discussion on what is Linear Algebra and Why we need Linear Algebra

    • Then we move on to Getting Started with R, where you will learn all about how to setup the R environment, so that it’s easy for you to have a hands-on experience.

    Then we get to the essence of this course;

    1. Vectors & Operations on Vectors

    2. Matrices & Operations on Matrices

    3. Determinant and Inverse

    4. Solving Systems of Linear Equations

    5. Norms & Basis Vectors

    6. Linear Independence

    7. Matrix Factorization

    8. Orthogonality

    9. Eigenvalues and Eigenvectors

    10. Singular Value Decomposition (SVD)

    Again, in each of these sections you will find R code demos and solved problems apart from the theoretical concepts of Linear Algebra.


    You will also learn how to use the R's pracma, matrixcalc library which contains numerous functions for matrix computations and solving Linear Algebric problems.


    So, let’s get started….


    Who this course is for:

    • Anyone who is curious about how Linear Algebra is used in Machine Learning
    • Anyone who wants to understand Maths and Linear Algebra behind Data Science
    • Anyone who wants to develop fundamental foundations for deployment of Machine Learning Techniques

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Syed Mohiuddin
    Syed Mohiuddin
    Instructor's Courses
    Welcome to my Udemy Courses, I make programming tutorials from beginner to advanced level, I focus on creating video tutorials for programmers, software developers, engineers, and analysts.I cover topics for all skill levels, so there is something for everyone here. My focus is on Python and R programming which is applied in statistics, data analysis, data science and machine learning.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 146
    • duration 9:45:06
    • Release Date 2023/06/16

    Courses related to Data Science

    Courses related to Math

    Courses related to Linear Algebra

    Courses related to R Programming

    Subtitle
    Advanced Web Scraping Tactics: R Playbook
    Subtitle
    Complete Your First Project in R