Companies Home Search Profile

Level up LLM applications development with LangChain and OpenAI

Focused View

Sandy Ludosky

3:52:26

0 View
  • 01 - Level up LLM applications.mp4
    00:39
  • 02 - What you should know.mp4
    02:48
  • 01 - Setup and installation.mp4
    04:03
  • 02 - Create a chain and interface with LLM.mp4
    04:12
  • 03 - Define and structure a prompt.mp4
    05:19
  • 04 - Create and invoke a chain (LCEL syntax).mp4
    02:54
  • 05 - Work with output parsers.mp4
    02:37
  • 01 - Quickstart Installation and setup.mp4
    02:28
  • 02 - Create embeddings from text (Faiss).mp4
    01:34
  • 03 - Querying the vector store.mp4
    01:56
  • 04 - Querying as a retriever.mp4
    04:59
  • 01 - RAG Overview and architecture.mp4
    02:12
  • 02 - Breaking down the RAG pipeline.mp4
    02:50
  • 03 - Project setup.mp4
    03:33
  • 04 - Load and split documents into chunks.mp4
    05:06
  • 05 - Initialize a vector store (Chroma) and ingest documents.mp4
    05:06
  • 06 - Create the chain Prompt + model + parser.mp4
    05:39
  • 07 - Create the chain Add context with a retriever.mp4
    04:48
  • 08 - Pass data with RunnablePassthrough and query data.mp4
    03:27
  • 09 - Challenge Create a custom agent with history.mp4
    03:12
  • 10 - Solution Add a chain with chat history.mp4
    05:19
  • 11 - Solution Context- and history-aware chatbot.mp4
    05:49
  • 01 - Set up the Streamlit application.mp4
    04:16
  • 02 - Build the layout with Streamlit components.mp4
    05:53
  • 03 - Adding functionality with Streamlit.mp4
    04:50
  • 04 - Challenge Deploy your Streamlit app.mp4
    03:37
  • 05 - Solution Add app to GitHub.mp4
    03:46
  • 06 - Solution Deploy your app.mp4
    05:47
  • 01 - Retrieval with query analysis.mp4
    01:16
  • 02 - Connect to a data source and create an index.mp4
    04:23
  • 03 - Set up query analysis to handle multiple data sources.mp4
    05:55
  • 04 - Retrieval with query analysis.mp4
    05:07
  • 05 - Challenge Retrieval with multiple data sources.mp4
    03:11
  • 06 - Solution Q&A with multiple data sources.mp4
    07:13
  • 01 - Getting started with MongoDB Create an account.mp4
    01:35
  • 02 - Build and deploy a free cluster.mp4
    01:41
  • 03 - Set up the MongoDB environment and connect to the cluster.mp4
    06:23
  • 04 - Create a secured database access (user).mp4
    03:27
  • 05 - Load sample data and create the vector store.mp4
    04:18
  • 06 - Create the Atlas Vector Search index.mp4
    04:04
  • 07 - Run vector search queries.mp4
    05:33
  • 01 - Create a retrieval chain Define the prompt.mp4
    02:51
  • 02 - Create a retrieval chain Define the context.mp4
    05:08
  • 03 - Create a retrieval chain Parse and format results.mp4
    01:47
  • 04 - Query documents and generate extended responses.mp4
    03:33
  • 01 - Using agents to perform actions in chains.mp4
    01:36
  • 02 - Define tools.mp4
    05:37
  • 03 - Select the perfect prompt.mp4
    01:12
  • 04 - Bind tools and create agent.mp4
    02:19
  • 05 - Create and run the agent executor.mp4
    04:41
  • 06 - Challenge Create a multitask agent.mp4
    05:31
  • 07 - Solution Define tools and functions.mp4
    06:09
  • 01 - Introducing LangServe Installation and setup.mp4
    03:35
  • 02 - Create a server.mp4
    00:49
  • 03 - Create the routes and the endpoints.mp4
    05:56
  • 04 - Create a runnable to combine a prompt, a model, and output.mp4
    03:35
  • 05 - Challenge Deploy a RESTful API.mp4
    01:39
  • 06 - Solution Deploy a RESTful API.mp4
    02:51
  • 01 - Manage and deploy an app on Render.mp4
    01:53
  • 02 - Create a GitHub repository and push your project.mp4
    04:21
  • 03 - Deploy a new web service on Render.mp4
    04:10
  • 01 - Conclusion.mp4
    00:28
  • Description


    Dive into the world of large language models (LLMs) with a focus on integrating them into practical applications utilizing OpenAI APIs. Discover how to enhance LLMs with retrieval components, deploy interactive chat applications, and construct multi-retriever agents for advanced data handling. Join instructor Sandy Ludosky to gain the skills to create intelligent agents capable of performing complex tasks, from semantic searches to question-answering chatbots, significantly enhancing user experiences. Whether you're aiming to innovate in your current role or embark on new AI projects, this course provides the foundational knowledge and practical skills needed to harness the power of LLMs effectively.

    More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Sandy Ludosky
    Sandy Ludosky
    Instructor's Courses
    HelloI am Sandy, freelance web and mobile Developer based out of Toronto, in Ontario, Canada, I specialize in Front-End development with HTML, CSS, CSS3 Animation, Sass, Javascript and JQuery.  I love creating beautiful, professional and user-friendly websites using the Adobe Creative Suite: Photoshop, Illustrator and Flash to name a few.  I am also keen on Web marketing, Web analytics, Visual Design, Video Editing, Photography and WordPress development. On top of being a Udemy instructor, I am an avid learner of new technologies and digital stuff.  *****************************Bonjour,Je suis Sandy, développeur javascript. Je suis passionnée de développement Front (HTML, CSS, CSS3 Animation, Sass, Javascript et ReactJS...).Mes autres intérêts sont le graphisme et motion design. Je suis également passionnée de conception visuelle, montage vidéo, photographie et gaming.Venez rejoindre ma communauté de 20k+ apprenants. Je publie régulièrement pour enrichir mon catalogue de nouveaux contenus. Depuis 2014, je partage mes connaissances, aussi bien en français qu'en anglais, sur les technologies Front et javascript qui ne cessent d'évoluer et d'offrir de nouvelles fonctionnalités pour faciliter notre réussite dans ce beau métier du développement et de la transformation digitale.Salutations !
    LinkedIn Learning is an American online learning provider. It provides video courses taught by industry experts in software, creative, and business skills. It is a subsidiary of LinkedIn. All the courses on LinkedIn fall into four categories: Business, Creative, Technology and Certifications. It was founded in 1995 by Lynda Weinman as Lynda.com before being acquired by LinkedIn in 2015. Microsoft acquired LinkedIn in December 2016.
    • language english
    • Training sessions 62
    • duration 3:52:26
    • English subtitles has
    • Release Date 2024/12/21