Companies Home Search Profile

Learning Deep Learning From Perceptron to Large Language Models

Focused View

13:23:02

117 View
  • 001. Learning Deep Learning Introduction.mp4
    02:53
  • 001. Topics.mp4
    00:20
  • 002. 1.1 Deep Learning and Its History.mp4
    05:49
  • 003. 1.2 Prerequisites.mp4
    05:29
  • 001. Topics.mp4
    01:31
  • 002. 2.1 The Perceptron and Its Learning Algorithm.mp4
    10:07
  • 003. 2.2 Programming Example Perceptron.mp4
    07:27
  • 004. 2.3 Understanding the Bias Term.mp4
    02:24
  • 005. 2.4 Matrix and Vector Notation for Neural Networks.mp4
    07:48
  • 006. 2.5 Perceptron Limitations.mp4
    09:39
  • 007. 2.6 Solving Learning Problem with Gradient Descent.mp4
    12:06
  • 008. 2.7 Computing Gradient with the Chain Rule.mp4
    15:41
  • 009. 2.8 The Backpropagation Algorithm.mp4
    08:05
  • 010. 2.9 Programming Example Learning the XOR Function.mp4
    14:34
  • 011. 2.10 What Activation Function to Use.mp4
    02:31
  • 012. 2.11 Lesson 2 Summary.mp4
    03:00
  • 001. Topics.mp4
    01:45
  • 002. 3.1 Datasets and Generalization.mp4
    08:13
  • 003. 3.2 Multiclass Classification.mp4
    05:51
  • 004. 3.3 Programming Example Digit Classification with Python.mp4
    17:09
  • 005. 3.4 DL Frameworks.mp4
    01:56
  • 006. 3.5 Programming Example Digit Classification with TensorFlow.mp4
    06:07
  • 007. 3.6 Programming Example Digit Classification with PyTorch.mp4
    11:42
  • 008. 3.7 Avoiding Saturating Neurons and Vanishing GradientsPart I.mp4
    09:15
  • 009. 3.8 Avoiding Saturating Neurons and Vanishing GradientsPart II.mp4
    12:29
  • 010. 3.9 Variations on Gradient Descent.mp4
    03:32
  • 011. 3.10 Programming Example Improved Digit Classification with TensorFlow.mp4
    02:34
  • 012. 3.11 Programming Example Improved Digit Classification with PyTorch.mp4
    05:15
  • 013. 3.12 Problem Types, Output Units, and Loss Functions.mp4
    07:26
  • 014. 3.13 Regularization Techniques.mp4
    03:37
  • 015. 3.14 Programming Example Regression Problem with TensorFlow.mp4
    07:19
  • 016. 3.15 Programming Example Regression Problem with PyTorch.mp4
    08:37
  • 017. 3.16 Lesson 3 Summary.mp4
    03:05
  • 001. Topics.mp4
    01:08
  • 002. 4.1 The CIFAR-10 Dataset.mp4
    04:09
  • 003. 4.2 Convolutional Layer.mp4
    09:07
  • 004. 4.3 Building a Convolutional Neural Network.mp4
    14:25
  • 005. 4.4 Programming Example Image Classification Using CNN with TensorF.mp4
    08:59
  • 006. 4.5 Programming Example Image Classification Using CNN with PyTorch.mp4
    09:17
  • 007. 4.6 AlexNet.mp4
    05:44
  • 008. 4.7 VGGNet.mp4
    05:18
  • 009. 4.8 GoogLeNet.mp4
    05:14
  • 010. 4.9 ResNet.mp4
    06:21
  • 011. 4.10 Programming Example Using a Pretrained Network with TensorFlow.mp4
    03:52
  • 012. 4.11 Programming Example Using a Pretrained Network with PyTorch.mp4
    04:51
  • 013. 4.12 Transfer Learning.mp4
    03:58
  • 014. 4.13 Efficient CNNs.mp4
    03:46
  • 015. 4.14 Lesson 4 Summary.mp4
    02:40
  • 001. Topics.mp4
    01:13
  • 002. 5.1 Problem Types Involving Sequential Data.mp4
    07:09
  • 003. 5.2 Recurrent Neural Networks.mp4
    08:22
  • 004. 5.3 Programming Example Forecasting Book Sales with TensorFlow.mp4
    09:26
  • 005. 5.4 Programming Example Forecasting Book Sales with PyTorch.mp4
    10:31
  • 006. 5.5 Backpropagation Through Time and Keeping Gradients Healthy.mp4
    08:35
  • 007. 5.6 Long Short-Term Memory.mp4
    09:47
  • 008. 5.7 Autoregression and Beam Search.mp4
    06:43
  • 009. 5.8 Programming Example Text Autocompletion with TensorFlow.mp4
    14:10
  • 010. 5.9 Programming Example Text Autocompletion with PyTorch.mp4
    15:40
  • 011. 5.10 Lesson 5 Summary.mp4
    01:53
  • 001. Topics.mp4
    01:01
  • 002. 6.1 Language Models.mp4
    13:05
  • 003. 6.2 Word Embeddings.mp4
    12:09
  • 004. 6.3 Programming Example Language Model and Word Embeddings with TensorFlow.mp4
    12:21
  • 005. 6.4 Programming Example Language Model and Word Embeddings with PyTorch.mp4
    11:22
  • 006. 6.5 Word2vec.mp4
    06:25
  • 007. 6.6 Programming Example Using Pretrained GloVe Embeddings.mp4
    06:47
  • 008. 6.7 Handling Out-of-Vocabulary Words with Wordpieces.mp4
    03:16
  • 009. 6.8 Lesson 6 Summary.mp4
    01:44
  • 001. Topics.mp4
    01:02
  • 002. 7.1 EncoderDecoder Network for Neural Machine.mp4
    04:28
  • 003. 7.2 Programming Example Neural Machine Transla.mp4
    24:25
  • 004. 7.3 Programming Example Neural Machine Transla.mp4
    21:51
  • 005. 7.4 Attention.mp4
    08:40
  • 006. 7.5 The Transformer.mp4
    09:03
  • 007. 7.6 Programming Example Machine Translation Us.mp4
    07:02
  • 008. 7.7 Programming Example Machine Translation Us.mp4
    08:22
  • 009. 7.8 Lesson 7 Summary.mp4
    01:30
  • 001. Topics.mp4
    01:08
  • 002. 8.1 Overview of BERT.mp4
    10:00
  • 003. 8.2 Overview of GPT.mp4
    07:16
  • 004. 8.3 From GPT to GPT4.mp4
    17:19
  • 005. 8.4 Handling Chat History.mp4
    05:45
  • 006. 8.5 Prompt Tuning.mp4
    08:50
  • 007. 8.6 Retrieving Data and Using Tools.mp4
    08:24
  • 008. 8.7 Open Datasets and Models.mp4
    05:50
  • 009. 8.8 Demo Large Language Model Prompting.mp4
    06:10
  • 010. 8.9 Lesson 8 Summary.mp4
    01:30
  • 001. Topics.mp4
    00:56
  • 002. 9.1 Multimodal learning.mp4
    08:20
  • 003. 9.2 Programming Example Multimodal Classification with TensorFlow.mp4
    07:36
  • 004. 9.3 Programming Example Multimodal Classification with PyTorch.mp4
    06:41
  • 005. 9.4 Image Captioning with Attention.mp4
    05:34
  • 006. 9.5 Programming Example Image Captioning with TensorFlow.mp4
    17:35
  • 007. 9.6 Programming Example Image Captioning with PyTorch.mp4
    18:51
  • 008. 9.7 Multimodal Large Language Models.mp4
    20:19
  • 009. 9.8 Lesson 9 Summary.mp4
    01:31
  • 001. Topics.mp4
    01:05
  • 002. 10.1 Multitask Learning.mp4
    05:52
  • 003. 10.2 Programming Example Multitask Learning with TensorFlow.mp4
    04:42
  • 004. 10.3 Programming Example Multitask Learning with PyTorch.mp4
    05:39
  • 005. 10.4 Object Detection with R-CNN.mp4
    06:39
  • 006. 10.5 Improved Object Detection with Fast and Faster R-CNN.mp4
    05:30
  • 007. 10.6 Segmentation with Deconvolution Network and U-Net.mp4
    08:32
  • 008. 10.7 Instance Segmentation with Mask R-CNN.mp4
    02:34
  • 009. 10.8 Lesson 10 Summary.mp4
    01:41
  • 001. Topics.mp4
    00:44
  • 002. 11.1 Ethical AI and Data Ethics.mp4
    19:04
  • 003. 11.2 Process for Tuning a Network.mp4
    06:18
  • 004. 11.3 Further Studies.mp4
    04:37
  • 001. Learning Deep Learning Summary.mp4
    08:23
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Pearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
    • language english
    • Training sessions 110
    • duration 13:23:02
    • Release Date 2024/07/04