Companies Home Search Profile

Learning Apache Spark | Master Spark for Big Data Processing

Focused View

7:11:08

0 View
  • 1 -Why Should You Learn Apache Spark.mp4
    06:13
  • 2 -What Does This Course Offer on Apache Spark.mp4
    05:37
  • 1 -Lets understand WordCount.mp4
    04:23
  • 2 -Lets understand Map and Reduce.mp4
    03:07
  • 3 -Programming with Map and Reduce.mp4
    03:24
  • 3 -section02 03 map reduce.zip
  • 4 -Lets understand Hadoop.mp4
    03:54
  • 5 -Apache Hadoop Architecture.mp4
    04:44
  • 6 -Apache Hadoop and Apache Spark.mp4
    05:01
  • 7 -Apache Spark Architecture.mp4
    04:06
  • 8 -What is PySpark.mp4
    03:21
  • 1 -Install JAVA JDK.mp4
    05:19
  • 1 -Section03 - 00 - Resources.zip
  • 2 -Install Python.mp4
    02:50
  • 3 -Install JupyterLab.mp4
    04:05
  • 4 -Install PySpark.mp4
    01:57
  • 5 -Spark Session by Initialization.mp4
    03:06
  • 6 -Running PySpark on AWS EC2 Instances P1.mp4
    07:27
  • 7 -Running PySpark on AWS EC2 Instance P2.mp4
    08:02
  • 1 -Why Use Databricks Community Edition.mp4
    03:42
  • 2 -Register for Databricks Community Edition.mp4
    05:25
  • 3 -When to use Databricks Community Edition.mp4
    04:36
  • 4 -Running Magic Commands in Databricks P1.mp4
    06:43
  • 5 -Running Magic Commands in Databricks P2.mp4
    01:51
  • 1 -Apache Spark DataFrame.mp4
    03:09
  • 2 -Create DataFrames from CSV Files P1.mp4
    06:42
  • 2 -data.zip
  • 2 -section05 03 create dataframes using csv files.zip
  • 3 -Create DataFrames from CSV Files P2.mp4
    06:00
  • 4 -Create DataFrames from Parquet Files.mp4
    04:53
  • 4 -section05 05 create dataframes using parquet files.zip
  • 1 -Using SELECT.mp4
    06:29
  • 1 -data.zip
  • 1 -section06 01 using select.zip
  • 2 -Using FILTER.mp4
    03:37
  • 2 -section06 02 using filter.zip
  • 3 -Using ORDER BY.mp4
    03:12
  • 3 -section06 03 using order by.zip
  • 4 -Using GROUP BY.mp4
    04:11
  • 4 -section06 04 using group by.zip
  • 5 -Using AGGREGATE Functions.mp4
    05:18
  • 5 -section06 05 using aggregate functions.zip
  • 6 -Using INNER JOIN.mp4
    05:25
  • 6 -section06 06 using inner joins.zip
  • 1 -Spark SQL Catalogs.mp4
    01:48
  • 2 -Access Spark SQL Catalogs.mp4
    02:48
  • 2 -data.zip
  • 2 -section07 02 access spark sql catalogs.zip
  • 3 -List Databases from Catalogs.mp4
    01:59
  • 3 -section07 03 list databases from catalogs.zip
  • 4 -List Tables from Current Database.mp4
    01:57
  • 4 -section07 04 list tables from current databases.zip
  • 5 -Create Spark Temp View.mp4
    05:01
  • 5 -section07 05 create spark temp view.zip
  • 6 -Run SQL Queries on Temp Views.mp4
    04:16
  • 6 -section07 06 run sql queries.zip
  • 7 -Drop Temp Views.mp4
    02:25
  • 7 -section07 07 drop temp views.zip
  • 1 -Using Databricks Utilities.mp4
    03:22
  • 1 -data.zip
  • 1 -section08 01 databricks file system for apache spark.zip
  • 2 -Using dbfs - Databricks Utility FileSystem.mp4
    07:06
  • 3 -Using dbfs - Make Directory.mp4
    02:33
  • 4 -Using dbfs - Copy Files.mp4
    02:27
  • 5 -Using dbfs - Delete Files.mp4
    01:28
  • 1 -Introduction to Pandas.mp4
    03:15
  • 2 -Pandas API on Spark.mp4
    02:57
  • 3 -Reading and Writing Data with Pandas P1.mp4
    07:36
  • 3 -data.zip
  • 3 -section09 03 reading and writing data with pandas.zip
  • 4 -Reading and Writing Data with Pandas P2.mp4
    05:34
  • 5 -Data Manipulation with PySpark Pandas.mp4
    07:13
  • 5 -section09 05 data manipulation with pyspark pandas.zip
  • 6 -Merging and Joining in PySpark Pandas.mp4
    04:57
  • 6 -section09 06 merging and joining dataframes with pyspark pandas.zip
  • 7 -Grouping and Aggregation with PySpark Pandas.mp4
    04:34
  • 7 -section09 07 grouping and aggregation with pyspark pandas.zip
  • 8 -Visualizing Data in PySpark Pandas.mp4
    03:46
  • 8 -section09 08 visualizing with pyspark pandas.zip
  • 1 -What is Apache Spark Structure Streaming.mp4
    04:10
  • 2 -How Apache Spark handles Structured Streaming.mp4
    03:32
  • 3 -Handling Programmatically Streaming Data.mp4
    03:26
  • 4 -Programmatic Modes by Apache Spark.mp4
    07:09
  • 5 -DataFrames for Streaming.mp4
    05:41
  • 6 -Section10 - 00 - Resources.zip
  • 6 -readStream API.mp4
    08:48
  • 7 -writeStream API.mp4
    08:20
  • 8 -Querying Data.mp4
    02:18
  • 9 -StreamingQuery - stop.mp4
    07:35
  • 10 -Structured Streaming with Kafka and Spark P1.mp4
    04:02
  • 11 -Structured Streaming with Kafka and Spark P2.mp4
    06:55
  • 12 -Structured Streaming with Kafka and Spark P3.mp4
    10:00
  • 13 -Terminate the Kafka Environment.mp4
    02:19
  • 14 -Handling Late Data Arrivals and Water Marking P1.mp4
    08:29
  • 15 -Handling Late Data Arrivals and Water Marking P2.mp4
    08:47
  • 1 -About this section.mp4
    02:13
  • 2 -Learning about Machine Learning.mp4
    06:44
  • 3 -How to build a Machine Learning Model.mp4
    03:49
  • 4 -Apache Spark MLLib Overview.mp4
    04:05
  • 5 -Learning about ML Pipelines using Spark MLlib.mp4
    03:52
  • 6 -Data Sources by Spark MLlib to Build ML Models.mp4
    03:18
  • 7 -Create DataFrames from Data Sources.mp4
    03:06
  • 7 -Section10 - 00 - Resources.zip
  • 8 -Learning about Featurization using Spark MLlib.mp4
    03:12
  • 9 -Using Apache Spark MLlibs - Feature Transformers.mp4
    03:11
  • 10 -Using Tokenizer.mp4
    06:01
  • 11 -Using StringIndexer.mp4
    04:00
  • 12 -Using Pipelines.mp4
    07:45
  • 13 -Using VectorAssembler.mp4
    04:22
  • 14 -Using VectorIndexer.mp4
    05:34
  • 15 -Using MLlib Estimator - Linear Regression.mp4
    08:30
  • 16 -Using MLlib Estimator - Logisitic Regression.mp4
    06:29
  • 17 -Measure ML Effiecny using Spark MLlib Evaluators.mp4
    08:43
  • 18 -Using ML for Solving Real World Problem.mp4
    07:18
  • 19 -Building ML Model P1 - Using Local Host.mp4
    07:47
  • 20 -Building ML Model P2 - Using Databricks Community Edition.mp4
    11:30
  • 21 -Using Apache Spark MLFlow with Databricks Community Edition.mp4
    03:17
  • Description


    Embark on a comprehensive journey to Master Apache Spark from Data Manipulation to Machine Learning!

    What You'll Learn?


    • Understand the fundamentals of Spark’s architecture and its distributed computing capabilities
    • Learn to write and optimize Spark SQL queries for efficient data processing
    • Master the creation and manipulation of DataFrames, a core component of Spark
    • Learn to read data from different file formats such as CSV and Parquet
    • Develop skills in filtering, sorting, and aggregating data to extract meaningful insights
    • Learn to process and analyze streaming data for real-time insights
    • Explore the capabilities of Spark’s MLlib for machine learning
    • Learn to create and fine-tune models using pipelines and transformers for predictive analytics

    Who is this for?


  • IT professionals interested in big data and analytics
  • Aspiring Data Scientists
  • Aspiring Data Analysts
  • Aspiring Machine Learning Engineers
  • Business Analysts
  • Software Engineers
  • Students and Academics
  • Researchers
  • Anyone Interested in Big Data
  • What You Need to Know?


  • You should know how to write and run Python code
  • Basic understanding of Python syntax and concepts is necessary
  • Understanding SQL (Structured Query Language) is important
  • You should know how to create and manage tables, transform data, and run queries
  • More details


    Description

    Unlock the power of big data with Apache Spark!

    In this course, you’ll learn how to use Apache Spark with Python to work with data.

    We’ll start with the basics and move up to advanced projects and machine learning.

    Whether you’re just starting or already know some Python, this course will teach you step-by-step how to process and analyze big data.

    What You’ll Learn:

    • Use PySpark’s DataFrame: Learn to organize and work with data.

    • Store Data Efficiently: Use formats like Parquet to store data quickly.

    • Use SQL in PySpark: Work with data using SQL, just like with DataFrames.

    • Connect PySpark with Python Tools: Dig deeper into data with Python’s data tools.

    • Machine Learning with PySpark’s MLlib: Work on big projects using machine learning.

    • Real-World Examples: Learn by doing with practical examples.

    • Handle Large Data Sets: Understand how to manage big data easily.

    • Solve Real-World Problems: Apply Spark to real-life data challenges.

    • Build Confidence in PySpark: Get better at big data processing.

    • Manage and Analyze Data: Gain skills for both work and personal projects.

    • Prepare for Data Jobs: Build skills for jobs in tech, finance, and healthcare.

    By the end of this course, you’ll have a solid foundation in Spark, ready to tackle real-world data challenges.

    Who this course is for:

    • IT professionals interested in big data and analytics
    • Aspiring Data Scientists
    • Aspiring Data Analysts
    • Aspiring Machine Learning Engineers
    • Business Analysts
    • Software Engineers
    • Students and Academics
    • Researchers
    • Anyone Interested in Big Data

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 88
    • duration 7:11:08
    • Release Date 2025/03/11

    Courses related to Apache Spark