Companies Home Search Profile

Learn Data Analysis With Pandas In 2023

Focused View

Federico Azzurro

7:49:26

57 View
  • 001 Introduction.mp4
    01:19
  • 002 Installing Anaconda.mp4
    05:25
  • 003 Jupyter Notebook.mp4
    09:17
  • 004 Resources.mp4
    00:58
  • external-links.txt
  • 001 Introduction.mp4
    05:05
  • 002 Attributes.mp4
    05:15
  • 003 Methods.mp4
    04:43
  • 004 Handling CSV files.mp4
    05:21
  • 004 TopRichestInWorld.csv
  • 005 head() & tail().mp4
    02:15
  • 006 Sorting values in a Series.mp4
    05:39
  • 007 Counting values in a Series.mp4
    05:38
  • 008 Accessing elements via position.mp4
    04:22
  • 009 Accessing elements via index.mp4
    03:20
  • 010 Homework.mp4
    01:39
  • 010 series-homework.zip
  • 011 Homework (Solutions).mp4
    03:31
  • external-links.txt
  • 001 Handling excel files.mp4
    04:16
  • 001 Introduction.mp4
    06:15
  • 002 Methods.mp4
    03:17
  • 003 describe() & info().mp4
    08:43
  • 003 imdb-top-1000.csv
  • 004 nlargest() & nsmallest().mp4
    05:34
  • 005 set index() & reset index().mp4
    03:15
  • 006 Removing columnsrows in a DataFrame with drop().mp4
    03:30
  • 007 Adding columns to a DataFrame.mp4
    01:59
  • 008 dropna().mp4
    05:04
  • 009 fillna().mp4
    04:16
  • 010 Homework.mp4
    01:04
  • 010 homework-dataframes-001.zip
  • 011 Homework (Solutions).mp4
    03:37
  • external-links.txt
  • 001 Titanic.xls.mp4
    02:19
  • 001 titanic3.xls
  • 002 .loc[].mp4
    03:30
  • 003 .loc[] (Continued).mp4
    02:37
  • 004 .iloc[].mp4
    03:53
  • 005 .iloc[] (Continued).mp4
    03:42
  • 006 Broadcasting.mp4
    04:32
  • 007 Conditions.mp4
    02:18
  • 008 Multiple conditions.mp4
    05:15
  • 009 between().mp4
    02:06
  • 010 isin(), isnull(), & notnull().mp4
    02:50
  • 011 Renaming.mp4
    06:04
  • 012 Homework.mp4
    01:36
  • 012 homework3.zip
  • 013 Homework (Solutions).mp4
    05:05
  • external-links.txt
  • 001 Pokemon.csv
  • 001 Pokemon.csv.mp4
    03:31
  • 002 apply().mp4
    06:53
  • 003 map() & applymap().mp4
    04:57
  • 004 astype().mp4
    05:07
  • 005 replace().mp4
    02:53
  • 006 where().mp4
    02:37
  • 007 agg().mp4
    06:13
  • 008 copy().mp4
    03:27
  • 009 Multi-indexing.mp4
    03:40
  • 010 Multi-indexing (Continued).mp4
    06:26
  • 011 Homework.mp4
    01:51
  • 011 homework-df3.zip
  • 012 Homework (Solutions).mp4
    05:28
  • external-links.txt
  • 001 .str.mp4
    04:25
  • 002 startswith() & endswith().mp4
    03:57
  • 003 Index & columns.mp4
    02:36
  • 001 Introduction.mp4
    01:51
  • 001 exams.csv
  • 002 transpose().mp4
    04:27
  • 003 stack() & unstack().mp4
    04:41
  • 004 melt().mp4
    03:16
  • 004 olympics.csv
  • 005 people.csv
  • 005 pivot().mp4
    04:10
  • 006 people2.csv
  • 006 pivot table().mp4
    06:30
  • 007 groupby() - Part 1.mp4
    05:21
  • 008 groupby() - Part 2.mp4
    04:01
  • 009 groupby() - Part 3.mp4
    02:15
  • 010 Homework.mp4
    01:02
  • 010 reshape-homework.zip
  • 011 Homework (Solutions).mp4
    03:09
  • external-links.txt
  • 001 Introduction.mp4
    00:27
  • 002 concat().mp4
    09:11
  • 003 company21.csv
  • 003 company22.csv
  • 003 merge().mp4
    02:01
  • 004 Outer join.mp4
    05:03
  • 005 Inner join.mp4
    03:53
  • 006 Left & right join.mp4
    01:43
  • 007 Left & right join (Minus).mp4
    02:29
  • 008 Outer join (Minus).mp4
    01:00
  • 009 Merging with different column names.mp4
    02:53
  • 001 Introduction.mp4
    00:43
  • 002 Timestamp & DatetimeIndex.mp4
    06:48
  • 003 date range().mp4
    04:47
  • 004 Period & PeriodIndex.mp4
    04:06
  • 005 Timedelta & TimedeltaIndex.mp4
    06:39
  • 006 Accessing time attributes through .dt.mp4
    03:17
  • 007 Timestamp methods & attributes.mp4
    05:31
  • 008 AAPL.csv
  • 008 Time Series in files (Part 1).mp4
    04:03
  • 009 Time Series in files (Part 2).mp4
    06:37
  • 010 loc[] & iloc[] with DatetimeIndex.mp4
    03:55
  • 011 reindex().mp4
    06:26
  • 012 resample().mp4
    05:53
  • 013 Homework.mp4
    01:49
  • 013 time-series-homework.zip
  • 014 Homework (Solutions).mp4
    06:12
  • external-links.txt
  • 001 Introduction.mp4
    01:24
  • 002 Line plots.mp4
    06:49
  • 003 Bar plots.mp4
    03:40
  • 004 Histograms.mp4
    02:52
  • 005 Pie charts.mp4
    05:43
  • 006 Styles.mp4
    04:35
  • 007 Interactive plots.mp4
    02:19
  • 008 Scatter.mp4
    02:08
  • 009 Candlestick charts (Bonus).mp4
    06:10
  • 010 Color by value (Bonus).mp4
    07:31
  • 010 gap.csv
  • external-links.txt
  • 001 Preview.mp4
    00:42
  • 002 Installation.mp4
    01:50
  • 002 languages.csv
  • 003 Implementation.mp4
    08:49
  • external-links.txt
  • 001 Introduction.mp4
    02:27
  • 002 Lists vs. NumPy arrays.mp4
    02:41
  • 003 What are arrays.mp4
    02:14
  • 004 More information.mp4
    01:59
  • 005 Array basics.mp4
    03:46
  • 006 Sorting and concatenating arrays.mp4
    01:55
  • 007 Getting the shape and size of an array.mp4
    01:41
  • 008 Reshaping an array.mp4
    02:09
  • 009 Adding a new axis to an array.mp4
    02:31
  • 010 Indexing and slicing.mp4
    04:31
  • 011 Creating arrays from existing data.mp4
    03:32
  • 012 Basic operations.mp4
    03:00
  • 013 Broadcasting.mp4
    01:59
  • 014 Matrices.mp4
    04:05
  • 015 Generating random numbers.mp4
    01:51
  • 016 Finding unique elements.mp4
    02:33
  • 017 Transposing and reshaping arrays.mp4
    01:51
  • 018 Reversing arrays.mp4
    02:46
  • 019 Reshaping & flattening multidimensional arrays.mp4
    01:43
  • 020 Saving & loading arrays.mp4
    03:36
  • external-links.txt
  • 001 Whats next.mp4
    01:30
  • external-links.txt
  • Description


    Learn Data Analysis with Pandas, Matplotlib, & Python in 2023

    What You'll Learn?


    • How to install Anaconda
    • How to use Pandas
    • How to use Matplotlib
    • How to use Jupyter Notebook
    • How to create plots for significant data
    • The basics of using NumPy

    Who is this for?


  • Python developers who are interested in learning Data Science
  • What You Need to Know?


  • You should be familiar with the basics of Python
  • You will need a computer and access to internet
  • More details


    Description

    Are you ready to embark on your journey as a professional Data Analyst, and learn some of the most demanded skills on the market in programming for 2023?


    Who is this course for?

    This course is for anyone who wants to build a strong foundation for Data Science with Python. It will cover everything you need to know about using Pandas for Data Analysis, and it will also cover how you can use Matplotlib to create some very insightful charts to display your data in a visually attractive way! The only requirement is that you have some experience with Python, for that's what we will be using in this course.


    Why should you pick this course and not the others?

    There are thousands of Python courses on the internet, so why should you pick this one? Well, to put it simply, I believe that I teach programming concepts in a far more effective way than a majority of the courses on the Internet. I make sure to only teach what's essential and needed, so that you don't waste time with code that you will never see or use in your entire career. I'm a self-taught professional and will teach you how you can be the same!


    30 Day Money-Back Guarantee

    At any point of this course you can opt in to get your money back. Whether you feel that this course is not right for you, or changed your mind about learning Data Analysis with Pandas, you can easily request a refund which will be immediately refunded to your account with no questions asked through Udemy!

    Who this course is for:

    • Python developers who are interested in learning Data Science

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Federico Azzurro
    Federico Azzurro
    Instructor's Courses
    Ciao! My name is Federico and I'm a programming instructor.I started teaching programming back in 2019. During this time I’ve taught I wide variety of topics: Android development, iOS development, Web development, JavaScript, Cross-Platform Development with React Native, Machine Learning with Python, Python Core-Concepts, C++, Kotlin, & much, much more!
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 123
    • duration 7:49:26
    • English subtitles has
    • Release Date 2023/11/15