Companies Home Search Profile

Kafka Streams in Action, Second Edition, Video Edition

Focused View

14:11:46

0 View
  • 001. Part 1.mp4
    01:12
  • 002. Part 1.mp4
    01:12
  • 003. Chapter 1. Welcome to the Kafka event streaming platform.mp4
    07:51
  • 004. Chapter 1. What is an event.mp4
    01:46
  • 005. Chapter 1. An event stream example.mp4
    02:11
  • 006. Chapter 1. Introducing the Apache Kafka event streaming platform.mp4
    06:56
  • 007. Chapter 1. A concrete example of applying the Kafka event streaming platform.mp4
    05:22
  • 008. Chapter 1. Summary.mp4
    02:01
  • 009. Chapter 2. Kafka brokers.mp4
    02:48
  • 010. Chapter 2. Produce requests.mp4
    01:43
  • 011. Chapter 2. Fetch requests.mp4
    01:56
  • 012. Chapter 2. Topics and partitions.mp4
    09:41
  • 013. Chapter 2. Sending your first messages.mp4
    07:40
  • 014. Chapter 2. Segments.mp4
    11:47
  • 015. Chapter 2. Tiered storage.mp4
    03:41
  • 016. Chapter 2. Cluster metadata.mp4
    02:14
  • 017. Chapter 2. Leaders and followers.mp4
    07:38
  • 018. Chapter 2. Checking for a healthy broker.mp4
    03:32
  • 019. Chapter 2. Summary.mp4
    00:45
  • 020. Part 2.mp4
    01:48
  • 021. Chapter 3. Schema Registry.mp4
    04:07
  • 022. Chapter 3. What is a schema, and why do you need one.mp4
    37:23
  • 023. Chapter 3. Subject name strategies.mp4
    10:38
  • 024. Chapter 3. Schema compatibility.mp4
    06:07
  • 025. Chapter 3. Schema references.mp4
    05:52
  • 026. Chapter 3. Schema references and multiple events per topic.mp4
    07:04
  • 027. Chapter 3. Schema Registry (de)serializers.mp4
    07:17
  • 028. Chapter 3. Serialization without Schema Registry.mp4
    03:13
  • 029. Chapter 3. Summary.mp4
    01:39
  • 030. Chapter 4. Kafka clients.mp4
    04:01
  • 031. Chapter 4. Producing records with the KafkaProducer.mp4
    19:07
  • 032. Chapter 4. Consuming records with the KafkaConsumer.mp4
    37:20
  • 033. Chapter 4. Exactly-once delivery in Kafka.mp4
    15:38
  • 034. Chapter 4. Using the Admin API for programmatic topic management.mp4
    02:57
  • 035. Chapter 4. Handling multiple event types in a single topic.mp4
    07:40
  • 036. Chapter 4. Summary.mp4
    03:14
  • 037. Chapter 5. Kafka Connect.mp4
    06:42
  • 038. Chapter 5. Integrating external applications into Kafka.mp4
    02:41
  • 039. Chapter 5. Getting started with Kafka Connect.mp4
    10:38
  • 040. Chapter 5. Applying Single Message Transforms.mp4
    06:00
  • 041. Chapter 5. Adding a sink connector.mp4
    05:47
  • 042. Chapter 5. Building and deploying your own connector.mp4
    19:01
  • 043. Chapter 5. Summary.mp4
    00:52
  • 044. Part 3.mp4
    03:12
  • 045. Chapter 6. Developing Kafka Streams.mp4
    01:41
  • 046. Chapter 6. Kafka Streams DSL.mp4
    01:08
  • 047. Chapter 6. Hello World for Kafka Streams.mp4
    14:30
  • 048. Chapter 6. Masking credit card numbers and tracking purchase rewards in a retail sales setting.mp4
    15:49
  • 049. Chapter 6. Interactive development.mp4
    03:21
  • 050. Chapter 6. Choosing which events to process.mp4
    17:32
  • 051. Chapter 6. Summary.mp4
    03:11
  • 052. Chapter 7. Streams and state.mp4
    03:39
  • 053. Chapter 7. Adding stateful operations to Kafka Streams.mp4
    30:26
  • 054. Chapter 7. Stream-stream joins.mp4
    17:53
  • 055. Chapter 7. State stores in Kafka Streams.mp4
    23:42
  • 056. Chapter 7. Summary.mp4
    01:01
  • 057. Chapter 8. The KTable API.mp4
    09:07
  • 058. Chapter 8. KTables are stateful.mp4
    02:09
  • 059. Chapter 8. The KTable API.mp4
    01:24
  • 060. Chapter 8. KTable aggregations.mp4
    08:00
  • 061. Chapter 8. GlobalKTable.mp4
    03:08
  • 062. Chapter 8. Table joins.mp4
    23:08
  • 063. Chapter 8. Summary.mp4
    01:29
  • 064. Chapter 9. Windowing and timestamps.mp4
    35:45
  • 065. Chapter 9. Handling out order data with grace literally.mp4
    04:57
  • 066. Chapter 9. Final windowed results.mp4
    11:32
  • 067. Chapter 9. Timestamps in Kafka Streams.mp4
    02:33
  • 068. Chapter 9. The TimestampExtractor.mp4
    05:23
  • 069. Chapter 9. Stream time.mp4
    02:39
  • 070. Chapter 9. Summary.mp4
    01:26
  • 071. Chapter 10. The Processor API.mp4
    13:17
  • 072. Chapter 10. Digging deeper into the Processor API with a stock analysis processor.mp4
    14:09
  • 073. Chapter 10. Data-driven aggregation.mp4
    07:11
  • 074. Chapter 10. Integrating the Processor API and the Kafka Streams API.mp4
    02:54
  • 075. Chapter 10. Summary.mp4
    00:52
  • 076. Chapter 11. ksqlDB.mp4
    11:12
  • 077. Chapter 11. More about streaming queries.mp4
    17:09
  • 078. Chapter 11. Persistent vs. push vs. pull queries.mp4
    11:36
  • 079. Chapter 11. Creating Streams and Tables.mp4
    05:47
  • 080. Chapter 11. Schema Registry integration.mp4
    06:11
  • 081. Chapter 11. ksqlDB advanced features.mp4
    09:27
  • 082. Chapter 11. Summary.mp4
    02:55
  • 083. Chapter 12. Spring Kafka.mp4
    05:35
  • 084. Chapter 12. Using Spring to build Kafka-enabled applications.mp4
    24:32
  • 085. Chapter 12. Spring Kafka Streams.mp4
    11:20
  • 086. Chapter 12. Summary.mp4
    01:24
  • 087. Chapter 13. Kafka Streams Interactive Queries.mp4
    03:25
  • 088. Chapter 13. Learning about Interactive Queries.mp4
    19:32
  • 089. Chapter 13. Summary.mp4
    00:53
  • 090. Chapter 14. Testing.mp4
    41:24
  • 091. Chapter 14. Summary.mp4
    01:47
  • 092. appendix A. Schema compatibility workshop.mp4
    09:35
  • 093. appendix A. Forward compatibility.mp4
    04:32
  • 094. appendix A. Full compatibility.mp4
    03:22
  • 095. appendix B. Confluent resources.mp4
    00:50
  • 096. appendix B. Confluent command-line interface.mp4
    01:08
  • 097. appendix B. Confluent local.mp4
    00:22
  • 098. appendix C. Working with Avro, Protobuf, and JSON Schema.mp4
    04:01
  • 099. appendix C. Protocol Buffers.mp4
    14:46
  • 100. appendix C. JSON Schema.mp4
    15:49
  • 101. appendix D. Understanding Kafka Streams architecture.mp4
    01:29
  • 102. appendix D. Consumer and producer clients in Kafka Streams.mp4
    05:30
  • 103. appendix D. Assigning, distributing, and processing events.mp4
    05:49
  • 104. appendix D. Threads in Kafka Streams StreamThread.mp4
    06:28
  • 105. appendix D. Processing records.mp4
    07:06
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 105
    • duration 14:11:46
    • Release Date 2024/11/03