Companies Home Search Profile

Healthcare NLP for Data Scientists

Focused View

Ace Vo

13:40:20

682 View
  • 1. Healthcare NLP for Data Scientists course overview.mp4
    06:18
  • 2. Course Structure.mp4
    02:09
  • 3. How to obtain a Healthcare NLP license for the course.html
  • 1.1 AverageEmbeddings.ipynb.html
  • 1. AverageEmbeddings.mp4
    05:48
  • 2.1 BertSentenceChunkEmbeddings.ipynb.html
  • 2. BertSentenceChunkEmbeddings.mp4
    11:26
  • 3.1 ChunkSentenceSplitter.ipynb.html
  • 3. ChunkSentenceSplitter.mp4
    10:00
  • 4.1 EntityChunkEmbeddings.ipynb.html
  • 4. EntityChunkEmbeddings.mp4
    09:59
  • 1.1 AnnotationMerger.ipynb.html
  • 1. AnnotationMerger.mp4
    06:41
  • 2.1 Replacer.ipynb.html
  • 2. Replacer.mp4
    09:24
  • 3.1 Chunk2Token.ipynb.html
  • 3. Chunk2Token.mp4
    04:46
  • 4.1 ChunkKeyPhraseExtraction.ipynb.html
  • 4. ChunkKeyPhraseExtraction.mp4
    13:10
  • 5.1 DateNormalizer.ipynb.html
  • 5. DateNormalizer.mp4
    07:31
  • 6.1 DrugNormalizer.ipynb.html
  • 6. DrugNormalizer.mp4
    07:36
  • 7.1 IOBTagger.ipynb.html
  • 7. IOBTagger.mp4
    04:52
  • 8.1 NerDisambiguator.ipynb.html
  • 8. NerDisambiguator.mp4
    06:48
  • 9.1 NerChunker.ipynb.html
  • 9. NerChunker.mp4
    05:18
  • 10. Flattener.mp4
    10:14
  • 11.1 NerQuestionGenerator.ipynb.html
  • 11. NerQuestionGenerator.mp4
    06:01
  • 12. InternalDocumentSplitter.mp4
    12:11
  • 1. RegexMatcher.mp4
    07:57
  • 2.1 NerConverterInternal.ipynb.html
  • 2. NerConverter.mp4
    11:34
  • 3.1 MedicalNerApproach.ipynb.html
  • 3. Ner Model Inference.mp4
    22:54
  • 4.1 MedicalNerModel.ipynb.html
  • 4. NerModel.mp4
    10:26
  • 5.1 MedicalBertForTokenClassifier.ipynb.html
  • 5. BertForTokenClassifier.mp4
    06:16
  • 6.1 ChunkFilterer.ipynb.html
  • 6. ChunkFilterer.mp4
    21:06
  • 7.1 ChunkFiltererApproach.ipynb.html
  • 7. ChunkFilterer Model Inference.mp4
    15:01
  • 8.1 ChunkMapperApproach.ipynb.html
  • 8. ChunkMerge Model Inference.mp4
    19:50
  • 9.1 ChunkMergeModel.ipynb.html
  • 9.2 ChunkMergeModel.ipynb.html
  • 9. ChunkMergeModel.mp4
    09:46
  • 10.1 ChunkConverter.ipynb.html
  • 10. ChunkConverter.mp4
    05:48
  • 11.1 ContextualParserModel.ipynb.html
  • 11. ContextualParserModel.mp4
    06:15
  • 12.1 ZeroShotNerModel.ipynb.html
  • 12. ZeroShotNerModel.mp4
    09:58
  • 13.1 ContextualParserModel.ipynb.html
  • 13. ContextualParser Model Inference.mp4
    07:56
  • 14. EntityRuler.mp4
    06:42
  • 15. TextMatcher.mp4
    07:05
  • 1.1 AssertionChunkConverter.ipynb.html
  • 1. AssertionChunkConverter.mp4
    03:33
  • 2.1 AssertionFilterer.ipynb.html
  • 2. AssertionFilterer.mp4
    08:12
  • 3.1 AssertionDLModel.ipynb.html
  • 3. AssertionDLModel.mp4
    17:51
  • 4. AssertionLogReg Model Inference.mp4
    05:38
  • 5.1 AssertionLogRegModel.ipynb.html
  • 5. AssertionLogRegModel.mp4
    05:43
  • 6.1 AssertionDLApproach.ipynb.html
  • 6. AssertionDL Model Inference.mp4
    21:22
  • 1.1 RelationExtractionModel.ipynb.html
  • 1. RelationExtractionModel.mp4
    17:46
  • 2.1 RelationExtractionDLModel.ipynb.html
  • 2. RelationExtractionDLModel.mp4
    09:48
  • 3.1 RelationExtractionApproach.ipynb.html
  • 3. RelationExtraction Model Inference Pt1.mp4
    15:55
  • 4.1 RelationExtractionApproach.ipynb.html
  • 4. RelationExtraction Model Inference Pt2.mp4
    13:32
  • 5.1 RENerChunksFilter.ipynb.html
  • 5. RENerChunksFilter.mp4
    13:43
  • 6.1 ZeroShotRelationExtractionModel.ipynb.html
  • 6. ZeroShotRelationExtractionModel.mp4
    11:44
  • 1.1 FeaturesAssembler.ipynb.html
  • 1. FeaturesAssembler.mp4
    07:53
  • 2.1 MedicalDistilBertForSequenceClassification.ipynb.html
  • 2. DistilBertForSequenceClassification.mp4
    09:36
  • 3.1 MedicalBertForSequenceClassification.ipynb.html
  • 3. BertForSequenceClassification.mp4
    09:12
  • 4.1 GenericClassifierApproach.ipynb.html
  • 4. GenericClassifier Model Inference.mp4
    11:49
  • 5.1 GenericSVMClassifierModel.ipynb.html
  • 5. GenericSVMClassifierModel.mp4
    07:11
  • 6.1 GenericLogRegClassifierApproach.ipynb.html
  • 6. GenericLogRegClassifier Model Inference.mp4
    12:22
  • 7.1 GenericClassifierModel.ipynb.html
  • 7. GenericClassifierModel.mp4
    04:58
  • 8.1 GenericSVMClassifierApproach.ipynb.html
  • 8. GenericSVMClassifier Model Inference.mp4
    11:58
  • 9.1 DocumentMLClassifierApproach.ipynb.html
  • 9. DocumentMLClassifier Model Inference.mp4
    15:46
  • 10.1 DocumentMLClassifierModel.ipynb.html
  • 10. DocumentMLClassifierModel.mp4
    05:28
  • 11.1 Notebook.html
  • 11. FewShotClassifier.mp4
    05:04
  • 12.1 Notebook.html
  • 12. WindowedSentenceModel.mp4
    04:53
  • 13.1 Notebook.html
  • 13. DocumentLogRegClassifier.mp4
    03:37
  • 14.1 Notebook.html
  • 14. DocumentFiltererByClassifier.mp4
    04:27
  • 1.1 Resolution2Chunk.ipynb.html
  • 1. Resolution2Chunk.mp4
    05:01
  • 2.1 ChunkMapperModel.ipynb.html
  • 2. ChunkMapperModel.mp4
    18:37
  • 3.1 DocMapperModel.ipynb.html
  • 3. DocMapperModel.mp4
    19:57
  • 4.1 DocMapperApproach.ipynb.html
  • 4. DocMapper Model Inference.mp4
    22:12
  • 5.1 ChunkMapperApproach.ipynb.html
  • 5. ChunkMapper Model Inference Pt1.mp4
    13:51
  • 6.1 ChunkMapperApproach.ipynb.html
  • 6. ChunkMapper Model Inference Pt2.mp4
    14:44
  • 7.1 ChunkMapperFilterer.ipynb.html
  • 7. ChunkMapperFilterer.mp4
    08:56
  • 8.1 Doc2ChunkInternal.ipynb.html
  • 8. Doc2Chunk.mp4
    05:22
  • 9.1 Router.ipynb.html
  • 9. Router.mp4
    08:42
  • 10.1 ResolverMerger.ipynb.html
  • 10. ResolverMerger.mp4
    07:11
  • 11.1 SentenceEntityResolverModel.ipynb.html
  • 11. SentenceEntityResolverModel.mp4
    08:51
  • 12.1 SentenceEntityResolverApproach.ipynb.html
  • 12. SentenceEntityResolver Model Inference.mp4
    13:33
  • 1.1 ReIdentification.ipynb.html
  • 1. ReIdentification.mp4
    05:26
  • 2.1 NameChunkObfuscatorApproach.ipynb.html
  • 2. NameChunkObfuscator Model Inference.mp4
    16:41
  • 3.1 NameChunkObfuscator.ipynb.html
  • 3. NameChunkObfuscator.mp4
    10:30
  • 4.1 DocumentHashCoder.ipynb.html
  • 4. DocumentHashCoder.mp4
    11:30
  • 5.1 DeIdentification.ipynb.html
  • 5.2 DeIdentificationModel.ipynb.html
  • 5. DeIdentification DeIdentificationModel Pt1.mp4
    19:13
  • 6.1 DeIdentification.ipynb.html
  • 6.2 DeIdentificationModel.ipynb.html
  • 6. DeIdentification DeIdentificationModel Pt2.mp4
    14:26
  • 1.1 MedicalSummarizer.ipynb.html
  • 1. Summarizer.mp4
    07:52
  • 2. ExtractiveSummarization.mp4
    04:51
  • 1.1 Medical Question Answering.ipynb.html
  • 1. QuestionAnswering.mp4
    05:14
  • 1.1 MedicalTextGenerator.ipynb.html
  • 1. TextGenerator.mp4
    09:53
  • Description


    Unlock your NLP power with Healthcare NLP, the most popular NLP library in the healthcare industry

    What You'll Learn?


    • Utilize 20,000+ State-of-the-Art NLP models that specalizes in solving healthcare problems in 200+ languages
    • Train & tune your own NLP models by leveraging the Spark NLP's pre-defined classifier architecture on your own datasets
    • Perform popular NLP tasks like clinical entity recognition, entity resolution (mapping entities to medical codes), assertion status detection
    • Deploy models as API's with NLP Server, a Docker container that contains all Spark NLPs capabilities

    Who is this for?


  • Data scientists who are looking to use Natural Language Processing at scale
  • Data scientists looking to build custom natural language understanding applications
  • Data Analysts who want to apply Natural Language Processing
  • Data scientists who are looking to leverage vast and deep healthcare knowledge in NLP to help achieve business objectives
  • What You Need to Know?


  • Hands-on understanding of Python is needed
  • Recommended: basic understanding of machine learning and natural language processing
  • Recommended: take the Spark NLP for Data Scientists course
  • Nice to have: basic understanding of Apache Spark
  • More details


    Description

    Hello everyone, welcome to the Healthcare NLP for Data Scientists course, offered by John Snow Labs, the creator of Healthcare NLP library!

    In this course, you will explore the extensive functionalities of John Snow Labs’ Healthcare NLP & LLM library,  designed to provide practical skills and industry insights for data scientists professionals in healthcare.

    The course covers foundational NLP techniques, including clinical entity recognition, entity resolution, assertion status detection (negation detection), relation extraction, de-identification, text summarization, keyword extraction, and text classification. There are over 13 hours of lectures with 70+ Python notebooks for you to review and use. You'll learn to leverage pre-trained models and train new models for your specific healthcare challenges.

    We offer both hands-on coding notebooks with lectures and accompanying blog posts for you to review and apply. By the end of the program, you'll emerge equipped with the skills and insights needed to excel in the dynamic landscape of healthcare NLP and LLM.

    We recommend that you take the Spark NLP for Data Scientist first to have an understading of our library and platform, that you have working experience using Python, some knowledge on Spark dataframe structure, and knowledge on NLP to make the most out of the course. Of course having some healthcare experience is always a plus.

    You will need a Healthcare NLP trial license for the course, so please reach out and get one to get started with learning. Looking forward to seeing you in the course.

    Who this course is for:

    • Data scientists who are looking to use Natural Language Processing at scale
    • Data scientists looking to build custom natural language understanding applications
    • Data Analysts who want to apply Natural Language Processing
    • Data scientists who are looking to leverage vast and deep healthcare knowledge in NLP to help achieve business objectives

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    We here at John Snow Labs are working to support natural language processing (NLP) tasks in the healthcare, legal, and finance industry. We provide the state-of-the-art algorithms for our clients so they can augment their work with the richness of text data. We offer NLP Summit every quarter, where we also host trainings on how to use our product and library packages. We hope to provide more accessible learning experience for everyone who are interested in NLP.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 81
    • duration 13:40:20
    • Release Date 2024/06/16