Companies Home Search Profile

Graph theory algorithms visualized

Focused View

Inside Code

8:54:48

135 View
  • 1.1 introduction.pptx
  • 1. Introduction to graph theory.mp4
    05:33
  • 2. [IMPORTANT] Before we start.html
  • 3. Python crash course (optional).html
  • 4.1 types and terms.pptx
  • 4. Terminology and types of graphs.mp4
    20:17
  • 1.1 adjacency list.pptx
  • 1.2 graph adj list.zip
  • 1.3 graphadjlist.zip
  • 1. Adjacency list representation.mp4
    11:50
  • 2.1 adjacency matrix.pptx
  • 2.2 graph adj mat.zip
  • 2.3 graphadjmat.zip
  • 2. Adjacency matrix representation.mp4
    08:22
  • 3.1 adj list vs adj mat.pptx
  • 3. Adjacency list vs adjacency matrix.mp4
    12:13
  • 4. Quiz Adjacency lists and matrices.html
  • 1.1 depth-first search.pptx
  • 1.2 dfs visualization.zip
  • 1.3 dfs.zip
  • 1.4 dfs.zip
  • 1. Depth-first search (DFS) algorithm.mp4
    19:45
  • 2. Problem Path exists in a graph.html
  • 3.1 dfs path exists.pptx
  • 3.2 dfs path exists.zip
  • 3.3 dfspathexists.zip
  • 3. Solution Path exists in a graph.mp4
    08:56
  • 4.1 bfs visualization.zip
  • 4.2 bfs.zip
  • 4.3 bfs.zip
  • 4.4 breadth first search.pptx
  • 4. Breadth-first search (BFS) algorithm.mp4
    14:54
  • 5. Problem Minimum edges from start to end.html
  • 6.1 bfs path exists.pptx
  • 6.2 bfs min edges.zip
  • 6.3 bfsminedges.zip
  • 6. Solution Minimum edges from start to end.mp4
    07:30
  • 7.1 bfs grid.zip
  • 7.2 bfsgrid.zip
  • 7.3 dfs and bfs in hidden.pptx
  • 7.4 dfs grid.zip
  • 7.5 dfsgrid.zip
  • 7.6 Flood fill algorithm YouTube video.html
  • 7. DFS and BFS in implicit graphs.mp4
    10:13
  • 1.1 topological sort intro.pptx
  • 1. What is topological sort.mp4
    09:01
  • 2.1 topological sort dfs.pptx
  • 2.2 topsort dfs.zip
  • 2.3 topsortdfs.zip
  • 2. DFS-based topological sort algorithm.mp4
    16:17
  • 3.1 topological sort bfs.pptx
  • 3.2 topsort bfs.zip
  • 3.3 topsortbfs.zip
  • 3. BFS-based topological sort algorithm (Kahns algorithm).mp4
    14:14
  • 4. Problem Find all possible recipes.html
  • 5.1 find recipes.pptx
  • 5.2 find possible recipes.zip
  • 5.3 findpossiblerecipes.zip
  • 5. Solution Find all possible recipes problem.mp4
    12:57
  • 6. Quiz Topological sort.html
  • 1.1 shortest path intro.pptx
  • 1. Introduction.mp4
    03:34
  • 2.1 Binary heaps YouTube video.html
  • 2.2 dijkstra.zip
  • 2.3 dijkstra.zip
  • 2.4 dijkstras algorithm.pptx
  • 2.5 fibonacciheap.zip
  • 2.6 tuple.zip
  • 2. Dijkstras algorithm.mp4
    44:27
  • 3.1 bellman ford.pptx
  • 3.2 bellman ford.zip
  • 3.3 bellmanford.zip
  • 3.4 edge.zip
  • 3.5 tuple.zip
  • 3. Bellman-Ford algorithm.mp4
    32:30
  • 4.1 floyd warshall.pptx
  • 4.2 floyd warshall.zip
  • 4.3 floydwarshall.zip
  • 4. Floyd-Warshall algorithm.mp4
    33:40
  • 5.1 johnson.zip
  • 5.2 johnson.zip
  • 5.3 johnsons.pptx
  • 5. Johnsons algorithm.mp4
    13:01
  • 6.1 shortest path with unweighted graphs.pptx
  • 6.2 shortest path unweighted.zip
  • 6.3 shortestpathunweighted.zip
  • 6. Shortest path in unweighted graphs.mp4
    07:19
  • 7.1 dag shortest path.pptx
  • 7.2 shortest path dag.zip
  • 7.3 shortestpathdag.zip
  • 7. Shortest path in directed acyclic graphs.mp4
    15:09
  • 1.1 is tree.zip
  • 1.2 istree.zip
  • 1.3 trees introduction.pptx
  • 1. What is a tree.mp4
    12:27
  • 2.1 graph to out-tree.pptx
  • 2.2 to out tree.zip
  • 2.3 toouttree.zip
  • 2. Out-trees (arborescence) and graph to out-tree conversion.mp4
    06:32
  • 3.1 distance k.zip
  • 3.2 distancek.zip
  • 3.3 nodes at a distance k.pptx
  • 3. Solution All nodes distance k in a tree problem.mp4
    08:33
  • 4. Quiz What is a tree.html
  • 1.1 find spanning tree.zip
  • 1.2 findspanningtree.zip
  • 1.3 mst-intro.pptx
  • 1. What is a (minimum) spanning tree.mp4
    08:57
  • 2.1 fibonacciheap.zip
  • 2.2 prim.zip
  • 2.3 prim.pptx
  • 2.4 prim.zip
  • 2.5 tuple.zip
  • 2. Prims algorithm.mp4
    25:26
  • 3.1 Disjoint-set data structure YouTube video.html
  • 3.2 disjointset.zip
  • 3.3 kruskal.zip
  • 3.4 kruskal.pptx
  • 3.5 kruskal.zip
  • 3. Kruskals algorithm.mp4
    13:08
  • 4. Problem Min cost to connect all points.html
  • 5.1 min cost to connect all points.pptx
  • 5.2 min cost connect.zip
  • 5.3 mincostconnect.zip
  • 5. Solution Min cost to connect all points problem.mp4
    05:31
  • 6. Quiz Minimum spanning trees.html
  • 1.1 eulerian trail intro.pptx
  • 1. What is a Eulerian pathcycle.mp4
    09:15
  • 2.1 hierholzer.zip
  • 2.2 hierholzer.pptx
  • 2.3 hierholzer.zip
  • 2. Hierholzers algorithm.mp4
    19:47
  • 3. Problem Reconstruct itinerary.html
  • 4.1 reconstruct itinerary.pptx
  • 4.2 reconstruct itinerary.zip
  • 4.3 reconstructitinerary.zip
  • 4. Solution Reconstruct itinerary.mp4
    05:35
  • 5.1 hamiltonian paths.pptx
  • 5. What is a Hamiltonian pathcycle.mp4
    06:29
  • 6.1 hamiltonian backtracking.pptx
  • 6.2 hamiltonian backtracking.zip
  • 6.3 hamiltonianbacktracking.zip
  • 6. Hamiltonian pathcycle finding algorithms.mp4
    10:12
  • 1.1 graph coloring.pptx
  • 1. Introduction to graph coloring.mp4
    14:54
  • 2.1 is bipartite.pptx
  • 2.2 two colorability.zip
  • 2.3 twocolorability.zip
  • 2. Checking 2-colorability (bipartite graph).mp4
    09:34
  • 3.1 k colorability.pptx
  • 3.2 k colorability.zip
  • 3.3 kcolorability.zip
  • 3. Checking k-colorability with backtracking.mp4
    12:12
  • 4.1 greedy coloring.pptx
  • 4.2 greedy coloring.zip
  • 4.3 greedycoloring.zip
  • 4. Greedy coloring.mp4
    11:27
  • 5.1 coloring heuristics.pptx
  • 5.2 dsatur.zip
  • 5.3 dsatur.zip
  • 5.4 welsh powell.zip
  • 5.5 welshpowell.zip
  • 5. Heuristics (Welsh-Powell, DSatur).mp4
    20:53
  • 6. Problem Sudoku solver.html
  • 7.1 sudoku coloring.pptx
  • 7.2 sudoku solver.zip
  • 7.3 sudokusolver.zip
  • 7. Solution Lets make a Sudoku solver.mp4
    12:14
  • 8. Quiz Graph coloring.html
  • Description


    Unleash the power of graph theory with cutting-edge algorithms

    What You'll Learn?


    • Learn graphs terminology and representation
    • Learn graph traversal
    • Learn algorithms related to various graph theory topics (shortest paths, minimum spanning trees...)
    • Solve graph related coding interview problems

    Who is this for?


  • Computer science students
  • Data science beginners
  • Software development beginners
  • More details


    Description

    This Graph theory algorithms will teach students the fundamental concepts and algorithms of graph theory with real life examples and eye-appealing visualizations. The course will cover topics such as graph representation, graph traversal, topological sort, shortest paths, minimum spanning trees, graph coloring... With a total of more than 20 covered algorithms.

    Discussed algorithms will be implemented in detail by using a programming language to give a better understanding for students. Captions, practice problems, quizzes, slides, and source code will also be here to make the learning experience way better. 

    By the end of the course, students will have a strong understanding of graph algorithms and be able to apply their knowledge to solve problems in computer science, mathematics, and beyond.

    This course is ideal for students who are looking to pursue careers in computer science, mathematics, or related fields, as well as for professionals who want to expand their knowledge of graph theory algorithms.


    Covered algorithms:

    • Graph traversal:

      • Depth-first search

      • Breadth-first search

    • Topological sorting:

      • Depth-first search based topological sort

      • Breadth-first search based topological sort (Kahn's algorithm)

    • Shortest path:

      • Dijkstra's algorithm

      • Bellman-Ford algorithm

      • Floyd-Warshall algorithm

      • Johnson's algorithm

      • Shortest path for unweighted graphs algorithm

      • Shortest path for directed acyclic graphs (1st approach) algorithm

      • Shortest path for directed acyclic graphs (2nd approach) algorithm

    • Trees and minimum spanning trees:

      • Spanning tree algorithm

      • Graph to out-tree algorithm

      • Prim's algorithm

      • Kruskal's algorithm

    • Eulerian/Hamiltonian paths and cycles:

      • Hierholzer's algorithm

      • Hamiltonian cycle backtracking algorithm

    • Graph coloring:

      • 2-colorability algorithm

      • k-colorability backtracking algorithm

      • Greedy coloring algorithm

      • Welsh-Powell heuristic

      • DSatur heuristic

    Who this course is for:

    • Computer science students
    • Data science beginners
    • Software development beginners

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Inside code is a content creation society founded in 2019, we create well-structured digital content and courses about algorithms and data structures that you can find on our Instagram page, on our YouTube channel, and on Udemy!Current courses:50 popular coding interview problemsDynamic programmingRecursionTime and space complexity analysis10 popular coding interview problems (free)
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 39
    • duration 8:54:48
    • Release Date 2023/04/10