Companies Home Search Profile

Graph Algorithms for Data Science, Video Edition

Focused View

9:44:41

75 View
  • 001. Part 1. Introduction to graphs.mp4
    01:52
  • 002. Chapter 1. Graphs and network science An introduction.mp4
    15:37
  • 003. Chapter 1. How to spot a graph-shaped problem.mp4
    07:58
  • 004. Chapter 1. Summary.mp4
    01:49
  • 005. Chapter 2. Representing network structure Designing your first graph model.mp4
    14:09
  • 006. Chapter 2. Network representations.mp4
    08:43
  • 007. Chapter 2. Designing your first labeled-property graph model.mp4
    21:22
  • 008. Chapter 2. Extracting knowledge from text.mp4
    15:18
  • 009. Chapter 2. Summary.mp4
    02:05
  • 010. Part 2. Network analysis.mp4
    01:24
  • 011. Chapter 3. Your first steps with Cypher query language.mp4
    39:52
  • 012. Chapter 3. Importing CSV files with Cypher.mp4
    20:45
  • 013. Chapter 3. Solutions to exercises.mp4
    02:50
  • 014. Chapter 3. Summary.mp4
    02:17
  • 015. Chapter 4. Exploratory graph analysis.mp4
    04:54
  • 016. Chapter 4. Aggregating data with Cypher query language.mp4
    15:09
  • 017. Chapter 4. Filtering graph patterns.mp4
    09:27
  • 018. Chapter 4. Counting subqueries.mp4
    02:07
  • 019. Chapter 4. Multiple aggregations in sequence.mp4
    05:05
  • 020. Chapter 4. Solutions to exercises.mp4
    02:12
  • 021. Chapter 4. Summary.mp4
    01:32
  • 022. Chapter 5. Introduction to social network analysis.mp4
    22:06
  • 023. Chapter 5. Introduction to the Neo4j Graph Data Science library.mp4
    06:07
  • 024. Chapter 5. Network characterization.mp4
    21:30
  • 025. Chapter 5. Identifying central nodes.mp4
    13:23
  • 026. Chapter 5. Solutions to exercises.mp4
    01:45
  • 027. Chapter 5. Summary.mp4
    02:26
  • 028. Chapter 6. Projecting monopartite networks.mp4
    17:38
  • 029. Chapter 6. Retweet network characterization.mp4
    11:29
  • 030. Chapter 6. Identifying the most influential content creators.mp4
    05:23
  • 031. Chapter 6. Solutions to exercises.mp4
    01:23
  • 032. Chapter 6. Summary.mp4
    01:44
  • 033. Chapter 7. Inferring co-occurrence networks based on bipartite networks.mp4
    22:45
  • 034. Chapter 7. Constructing the co-occurrence network.mp4
    22:33
  • 035. Chapter 7. Characterization of the co-occurrence network.mp4
    04:43
  • 036. Chapter 7. Community detection with the label propagation algorithm.mp4
    05:30
  • 037. Chapter 7. Identifying community representaties with PageRank.mp4
    05:44
  • 038. Chapter 7. Solutions to exercises.mp4
    01:00
  • 039. Chapter 7. Summary.mp4
    02:24
  • 040. Chapter 8. Constructing a nearest neighbor similarity network.mp4
    22:55
  • 041. Chapter 8. Constructing the nearest neighbor graph.mp4
    07:02
  • 042. Chapter 8. User segmentation with the community detection algorithm.mp4
    03:47
  • 043. Chapter 8. Solutions to exercises.mp4
    01:23
  • 044. Chapter 8. Summary.mp4
    01:31
  • 045. Part 3. Graph machine learning.mp4
    01:37
  • 046. Chapter 9. Node embeddings and classification.mp4
    12:47
  • 047. Chapter 9. Node classification task.mp4
    10:36
  • 048. Chapter 9. The node2ec algorithm.mp4
    24:12
  • 049. Chapter 9. Solutions to exercises.mp4
    00:14
  • 050. Chapter 9. Summary.mp4
    01:20
  • 051. Chapter 10. Link prediction.mp4
    13:46
  • 052. Chapter 10. Dataset split.mp4
    15:24
  • 053. Chapter 10. Network feature engineering.mp4
    16:28
  • 054. Chapter 10. Link prediction classification model.mp4
    07:48
  • 055. Chapter 10. Solutions to exercises.mp4
    00:55
  • 056. Chapter 10. Summary.mp4
    02:32
  • 057. Chapter 11. Knowledge graph completion.mp4
    16:23
  • 058. Chapter 11. Knowledge graph completion.mp4
    15:01
  • 059. Chapter 11. Solutions to exercises.mp4
    00:35
  • 060. Chapter 11. Summary.mp4
    01:33
  • 061. Chapter 12. Constructing a graph using natural language processing techniques.mp4
    09:44
  • 062. Chapter 12. Named entity recognition.mp4
    03:14
  • 063. Chapter 12. Relation extraction.mp4
    02:50
  • 064. Chapter 12. Implementation of information extraction pipeline.mp4
    13:07
  • 065. Chapter 12. Solutions to exercises.mp4
    00:38
  • 066. Chapter 12. Summary.mp4
    01:35
  • 067. Appendix. The Neo4j enironment.mp4
    04:36
  • 068. Appendix. Neo4j installation.mp4
    04:38
  • 069. Appendix. Neo4j Browser configuration.mp4
    00:30
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    O'Reilly Media is an American learning company established by Tim O'Reilly that publishes books, produces tech conferences, and provides an online learning platform. Its distinctive brand features a woodcut of an animal on many of its book covers.
    • language english
    • Training sessions 69
    • duration 9:44:41
    • Release Date 2024/07/26