Companies Home Search Profile

Generative Adversarial Networks (GANs): Complete Guide

Focused View

Jones Granatyr,IA Expert Academy,Gabriel Alves

9:54:03

82 View
  • 1. Course content.mp4
    15:09
  • 2. Introduction to GANs.mp4
    18:21
  • 3. How GANs work.mp4
    13:37
  • 4. Course materials.html
  • 1.1 Source code - Google Colab.html
  • 1. DCGAN - intuition.mp4
    08:13
  • 2. MNIST dataset.mp4
    17:05
  • 3. Building the generator.mp4
    19:53
  • 4. Building the discriminator.mp4
    12:03
  • 5. Loss (error) calculation.mp4
    10:27
  • 6. Training.mp4
    12:32
  • 7. Visualizing the results.mp4
    11:07
  • 8. HOMEWORK and solution.html
  • 9.1 Source code - Google Colab.html
  • 9. WGAN - intuition 1.mp4
    16:53
  • 10. WGAN - intuition 2.mp4
    12:29
  • 11. WGAN-GP - intuition.mp4
    06:16
  • 12. Preparing the environment.mp4
    05:52
  • 13. Wassertein loss.mp4
    09:15
  • 14. Gradient penalty.mp4
    16:01
  • 15. Training 1.mp4
    12:34
  • 16. Training 2 and visualization.mp4
    13:05
  • 17. HOMEWORK and solution.html
  • 1. cGAN - intuition.mp4
    13:32
  • 2.1 Source code - Google Colab.html
  • 2. Pix2Pix - intuition.mp4
    13:54
  • 3. Map dataset.mp4
    09:13
  • 4. Preprocessing the images 1.mp4
    08:59
  • 5. Preprocessing the images 2.mp4
    16:56
  • 6. Loading the data.mp4
    09:03
  • 7. Building the generator 1.mp4
    19:36
  • 8. Building the generator 2.mp4
    21:39
  • 9. Building the generator 3.mp4
    08:37
  • 10. Building the discriminator 1.mp4
    16:00
  • 11. Building the discriminator 2.mp4
    06:15
  • 12. Generating the images.mp4
    06:35
  • 13. Training 1.mp4
    13:49
  • 14. Training 2 and results.mp4
    22:23
  • 15.1 Source code - Google Colab.html
  • 15. Pretrained Pix2Pix with PyTorch.mp4
    11:58
  • 16. Facades dataset.mp4
    04:54
  • 17. Visualizing the results.mp4
    08:39
  • 18. Drawing to photo 1.mp4
    05:14
  • 19. Drawing to photo 2.mp4
    11:37
  • 20. Night to day.mp4
    03:23
  • 21. HOMEWORK and solution.html
  • 1. Biological fundamentals.mp4
    05:42
  • 2. Single layer perceptron.mp4
    19:23
  • 3. Multilayer perceptron sum and activation functions.mp4
    14:20
  • 4. Multilayer perceptron error calculation.mp4
    05:19
  • 5. Gradient descent.mp4
    09:49
  • 6. Delta parameter.mp4
    08:09
  • 7. Updating weights with backpropagation.mp4
    14:03
  • 8. Bias, error, stochastic gradient descent, and more parameters.mp4
    17:56
  • 1. Introduction to convolutional neural networks.mp4
    07:18
  • 2. Convolutional operator.mp4
    10:04
  • 3. Pooling.mp4
    05:28
  • 4. Flattening.mp4
    06:31
  • 5. Dense neural network.mp4
    05:10
  • 1. Final remarks.mp4
    01:43
  • Description


    Deep Learning and Computer Vision to implement projects using one of the most revolutionary technologies in the world!

    What You'll Learn?


    • Understand the basic intuition about GANs
    • Generate images of digits (0 - 9) using DCGAN and WGAN
    • Transform satellite images into maps using Pix2Pix architecture
    • Transform zebras into horses using CycleGAN architecture
    • Transfer styles between images
    • Apply super resolution to improve image quality using ESRGAN architecture
    • Create new faces of people with high quality and definition using StyleGAN
    • Generate images through textual descriptions
    • Restore old photos using GFP-GAN
    • Complete missing parts of images using Boundless architecture
    • Generate deepfakes to swap faces with SimSwap

    Who is this for?


  • People interested in creating complex applications using GANs
  • Undergraduate and graduate students who are taking courses on Computer Vision, Artificial Intelligence, Digital Image Processing or Computer Vision
  • People who want to implement their own projects using Computer Vision techniques
  • Data Scientists who want to increase their project portfolio
  • What You Need to Know?


  • Programming logic
  • Basic Python programming
  • Knowledge about neural networks is desirable, but not mandatory
  • More details


    Description

    GANs (Generative Adversarial Networks) are considered one of the most modern and fascinating technologies within the field of Deep Learning and Computer Vision. They have gained a lot of attention because they can create fake content. One of the most classic examples is the creation of people who do not exist in the real world to be used to broadcast television programs. This technology is considered a revolution in the field of Artificial Intelligence for producing high quality results, remaining one of the most popular and relevant topics.

    In this course you will learn the basic intuition and mainly the practical implementation of the most modern architectures of Generative Adversarial Networks! This course is considered a complete guide because it presents everything from the most basic concepts to the most modern and advanced techniques, so that in the end you will have all the necessary tools to build your own projects! See below some of the projects that you are going to implement step by step:

    • Creating of digits from 0 to 9

    • Transforming satellite images into map images, like Google Maps style

    • Convert drawings into high-quality photos

    • Create zebras using horse images

    • Transfer styles between images using paintings by famous artists such as Van Gogh, Cezanne and Ukiyo-e

    • Increase the resolution of low quality images (super resolution)

    • Generate deepfakes (fake faces) with high quality

    • Create images through textual descriptions

    • Restore old photos

    • Complete missing parts of images

    • Swap the faces of people who are in different environments

    To implement the projects, you will learn several different architectures of GANs, such as: DCGAN (Deep Convolutional Generative Adversarial Network), WGAN (Wassertein GAN), WGAN-GP (Wassertein GAN-Gradient Penalty), cGAN (conditional GAN), Pix2Pix (Image-to-Image), CycleGAN (Cycle-Consistent Adversarial Network), SRGAN (Super Resolution GAN), ESRGAN (Enhanced Super Resolution GAN), StyleGAN (Style-Based Generator Architecture for GANs), VQ-GAN (Vector Quantized Generative Adversarial Network), CLIP (Contrastive Language–Image Pre-training), BigGAN, GFP-GAN (Generative Facial Prior GAN), Unlimited GAN (Boundless) and SimSwap (Simple Swap).

    During the course, we will use the Python programming language and Google Colab online, so you do not have to worry about installing and configuring libraries on your own machine! More than 100 lectures and 16 hours of videos!

    Who this course is for:

    • People interested in creating complex applications using GANs
    • Undergraduate and graduate students who are taking courses on Computer Vision, Artificial Intelligence, Digital Image Processing or Computer Vision
    • People who want to implement their own projects using Computer Vision techniques
    • Data Scientists who want to increase their project portfolio

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Jones Granatyr
    Jones Granatyr
    Instructor's Courses
    Olá! Meu nome é Jones Granatyr e já trabalho em torno de 10 anos com Inteligência Artificial (IA), inclusive fiz o meu mestrado e doutorado nessa área. Atualmente sou professor, pesquisador e fundador do portal IA Expert, um site com conteúdo específico sobre Inteligência Artificial. Desde que iniciei na Udemy criei vários cursos sobre diversos assuntos de IA, como por exemplo: Deep Learning, Machine Learning, Data Science, Redes Neurais Artificiais, Algoritmos Genéticos, Detecção e Reconhecimento Facial, Algoritmos de Busca, Mineração de Textos, Buscas em Textos, Mineração de Regras de Associação, Sistemas Especialistas e Sistemas de Recomendação. Os cursos são abordados em diversas linguagens de programação (Python, R e Java) e com várias ferramentas/tecnologias (tensorflow, keras, pandas, sklearn, opencv, dlib, weka, nltk, por exemplo). Meu principal objetivo é desmistificar a área de IA e ajudar profissionais de TI a entenderem como essa tecnologia pode ser utilizada na prática e que possam visualizar novas oportunidades de negócios.
    IA Expert Academy
    IA Expert Academy
    Instructor's Courses
    A plataforma IA Expert tem o objetivo de trazer cursos teóricos e práticos de fácil entendimento sobre sobre Inteligência Artificial e Ciência de Dados, para que profissionais de todas as áreas consigam entender e aplicar os benefícios que a IA pode trazer para seus negócios, bem como apresentar todas as oportunidades que essa área pode trazer para profissionais de tecnologia da informação. Também trazemos notícias atualizadas semanais sobre a área em nosso portal.
    Gabriel Alves
    Gabriel Alves
    Instructor's Courses
    Olá, eu me chamo Gabriel Alves e sou formado em Ciência da Computação pela Universidade do Contestado (UnC) de Porto União. Também possuo Curso Técnico em Informática pelo Colégio Técnico de União da Vitória (COLTEC), concluído em 2014. Trabalho como desenvolvedor web há 7 anos, mas já lido com programação há mais de 9 anos. Em meus projetos faço o uso de várias linguagens, especialmente Python, a qual tenho preferência para utilizar no desenvolvimento das minhas pesquisas relacionadas a Inteligência Artificial e Aprendizagem de Máquina. Sou desde sempre apaixonado pela computação e por temas que envolvem ciência e tecnologia.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 52
    • duration 9:54:03
    • Release Date 2023/06/08

    Courses related to Network Security

    Courses related to Computer Network

    UCS Concepts
    CBT NuggetsUCS Concepts
    45:38
    07/15/2023
    Subtitle
    Protocol Deep Dive: ICMP
    Pluralsight Nick Russo
    Nick Russo
    Protocol Deep Dive: ICMP
    2:01:23
    English subtitles
    06/10/2023

    Courses related to Network Engineering

    Subtitle
    Monitor with Prometheus
    Udemy Akshay Gulati
    Akshay Gulati
    Monitor with Prometheus
    8:43:13
    English subtitles
    08/08/2023

    Courses related to Wireless Networking