Companies Home Search Profile

Fast Python Video Edition

Focused View

8:52:13

5 View
  • 001. Part 1. Foundational Approaches.mp4
    00:40
  • 002. Chapter 1. An urgent need for efficiency in data processing.mp4
    11:54
  • 003. Chapter 1. Modern computing architectures and high-performance computing.mp4
    11:36
  • 004. Chapter 1. Working with Pythons limitations.mp4
    06:48
  • 005. Chapter 1. A summary of the solutions.mp4
    04:58
  • 006. Chapter 1. Summary.mp4
    01:21
  • 007. Chapter 2. Extracting maximum performance from built-in features.mp4
    10:14
  • 008. Chapter 2. Profiling code to detect performance bottlenecks.mp4
    08:13
  • 009. Chapter 2. Optimizing basic data structures for speed Lists, sets, and dictionaries.mp4
    09:42
  • 010. Chapter 2. Finding excessive memory allocation.mp4
    16:33
  • 011. Chapter 2. Using laziness and generators for big-data pipelining.mp4
    03:15
  • 012. Chapter 2. Summary.mp4
    02:23
  • 013. Chapter 3. Concurrency, parallelism, and asynchronous processing.mp4
    21:19
  • 014. Chapter 3. Implementing a basic MapReduce engine.mp4
    04:17
  • 015. Chapter 3. Implementing a concurrent version of a MapReduce engine.mp4
    09:30
  • 016. Chapter 3. Using multiprocessing to implement MapReduce.mp4
    13:41
  • 017. Chapter 3. Tying it all together An asynchronous multithreaded and multiprocessing MapReduce server.mp4
    08:50
  • 018. Chapter 3. Summary.mp4
    01:49
  • 019. Chapter 4. High-performance NumPy.mp4
    25:33
  • 020. Chapter 4. Using array programming.mp4
    18:25
  • 021. Chapter 4. Tuning NumPys internal architecture for performance.mp4
    11:32
  • 022. Chapter 4. Summary.mp4
    02:12
  • 023. Part 2. Hardware.mp4
    00:43
  • 024. Chapter 5. Re-implementing critical code with Cython.mp4
    05:55
  • 025. Chapter 5. A whirlwind tour of Cython.mp4
    15:28
  • 026. Chapter 5. Profiling Cython code.mp4
    07:26
  • 027. Chapter 5. Optimizing array access with Cython memoryviews.mp4
    05:59
  • 028. Chapter 5. Writing NumPy generalized universal functions in Cython.mp4
    03:58
  • 029. Chapter 5. Advanced array access in Cython.mp4
    14:54
  • 030. Chapter 5. Parallelism with Cython.mp4
    02:03
  • 031. Chapter 5. Summary.mp4
    01:56
  • 032. Chapter 6. Memory hierarchy, storage, and networking.mp4
    14:14
  • 033. Chapter 6. Efficient data storage with Blosc.mp4
    08:46
  • 034. Chapter 6. Accelerating NumPy with NumExpr.mp4
    05:46
  • 035. Chapter 6. The performance implications of using the local network.mp4
    10:59
  • 036. Chapter 6. Summary.mp4
    02:00
  • 037. Part 3. Applications and Libraries for Modern Data Processing.mp4
    00:37
  • 038. Chapter 7. High-performance pandas and Apache Arrow.mp4
    18:57
  • 039. Chapter 7. Techniques to increase data analysis speed.mp4
    08:55
  • 040. Chapter 7. pandas on top of NumPy, Cython, and NumExpr.mp4
    08:44
  • 041. Chapter 7. Reading data into pandas with Arrow.mp4
    10:57
  • 042. Chapter 7. Using Arrow interop to delegate work to more efficient languages and systems.mp4
    10:06
  • 043. Chapter 7. Summary.mp4
    01:54
  • 044. Chapter 8. Storing big data.mp4
    12:17
  • 045. Chapter 8. Parquet An efficient format to store columnar data.mp4
    12:21
  • 046. Chapter 8. 8. Dealing with larger-than-memory datasets the old-fashioned way.mp4
    07:11
  • 047. Chapter 8. Zarr for large-array persistence.mp4
    18:48
  • 048. Chapter 8. Summary.mp4
    01:33
  • 049. Part 4. Advanced Topics.mp4
    00:36
  • 050. Chapter 9. Data analysis using GPU computing.mp4
    19:31
  • 051. Chapter 9. Using Numba to generate GPU code.mp4
    13:07
  • 052. Chapter 9. Performance analysis of GPU code The case of a CuPy application.mp4
    14:17
  • 053. Chapter 9. Summary.mp4
    01:56
  • 054. Chapter 10. Analyzing big data with Dask.mp4
    10:49
  • 055. Chapter 10. The computational cost of Dask operations.mp4
    17:19
  • 056. Chapter 10. Using Dasks distributed scheduler.mp4
    17:44
  • 057. Chapter 10. Summary.mp4
    02:07
  • 058. Appendix A. Setting up the environment.mp4
    02:54
  • 059. Appendix A. Installing your own Python distribution.mp4
    01:04
  • 060. Appendix A. Using Docker.mp4
    00:45
  • 061. Appendix A. Hardware considerations.mp4
    02:25
  • 062. Appendix B. Using Numba to generate efficient low-level code.mp4
    07:56
  • 063. Appendix B. Writing explicitly parallel functions in Numba.mp4
    00:51
  • 064. Appendix B. Writing NumPy-aware code in Numba.mp4
    01:40
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 64
    • duration 8:52:13
    • Release Date 2024/03/01