Companies Home Search Profile

Essential Code for Data-Science Projects COMPLETE COURSE

Focused View

13:11:23

14 View
  • 1. Installing the necessary software.mp4
    04:00
  • 1. 1. How to effectively read an xlsx file.mp4
    08:25
  • 2. Skip reading rows when reading a dataframe.mp4
    04:11
  • 3. How to read a specific sheet from an excel file.mp4
    01:27
  • 4. Set the index of a dataframe upon reading it.mp4
    06:07
  • 5. Read specific columns from an excel file.mp4
    02:53
  • 6. Read data from World Bank.mp4
    09:40
  • 7. Send many dataframes into the same Excel file.mp4
    06:37
  • 8. Send a dataframe to a CSV.mp4
    02:00
  • 9. Hide Warnings.mp4
    04:25
  • 10. Reading rows from topbottom (nrows, skipfooter).mp4
    04:41
  • 11. Check if an Excel cell is empty.mp4
    09:52
  • 12. Check the version of the installed packages.mp4
    02:14
  • 13. Hide special warnings.mp4
    03:07
  • 1. 1. Set and reset the index.mp4
    16:55
  • 2. Change the name of the index of a dataframe.mp4
    02:09
  • 3. Find the rowcolumn index of any element of a dataframe.mp4
    11:20
  • 4. The enumerate() command to enumerate rowselements.mp4
    08:29
  • 5. Sort the index of a dataframe sort index.mp4
    02:19
  • 1. How to sort the elements of a list.mp4
    14:05
  • 2. Remove elements from a list.mp4
    04:42
  • 3. Create a sublist from another list.mp4
    08:06
  • 4. List comprehension from consecutive numbers.mp4
    05:53
  • 5. Print first last elements of a list.mp4
    00:56
  • 6. Place in a list the elements of another list.mp4
    01:44
  • 7. Remove all occurrences of an element.mp4
    05:08
  • 8. pop() versus remove().mp4
    04:36
  • 9. List comprehensions.mp4
    03:54
  • 10. Slicing.mp4
    06:41
  • 11. Enumerate, index.mp4
    05:45
  • 12. series.isin(list).mp4
    03:50
  • 13. Count how many times an element is in a list.mp4
    01:58
  • 14. Make a copy and an alias of a list.mp4
    01:09
  • 1. Return elements from a dataframe.mp4
    08:46
  • 2. Delete rows columns (iloc, drop).mp4
    05:51
  • 3. Read indices and values of a dataframe.mp4
    03:51
  • 4. Show the max number of rowscolumns.mp4
    03:17
  • 5. Create a copy of a dataframe.mp4
    01:58
  • 6. Take a backup of a dataframe (copy versus =).mp4
    04:45
  • 7. Change specific values in a dataframe.mp4
    07:09
  • 8. Make a new column and fill it with the values of another column.mp4
    02:10
  • 9. Change the order of columns in a dataframe.mp4
    07:36
  • 10. New row and fill it with the values of other rows.mp4
    04:13
  • 11. New column with values 1,2,3... (arange).mp4
    02:10
  • 12. pivot tables.mp4
    08:44
  • 13. Rename rows columns of a dataframe.mp4
    03:56
  • 14. Use a dictionary to create a dataframe.mp4
    03:25
  • 15. Transpose of a dataframe.mp4
    02:07
  • 16. Select rowscolumns of a dataframe.mp4
    08:17
  • 17. Repeat a rowcolumn (np.repeat).mp4
    10:51
  • 18. Sorting the columns.mp4
    07:52
  • 19. Change the datatype of a rowcolumn (astype).mp4
    04:25
  • 20. Select specific rowscolumns (loc, arange).mp4
    04:52
  • 21. How to delete many rows from a dataframe.mp4
    11:04
  • 22. Get the value under another column of the same row.mp4
    04:13
  • 23. Use iteritems on a dataframe.mp4
    03:39
  • 24. Sort the values of a column (sort values).mp4
    02:49
  • 25. Populate a column via list, array, series.mp4
    01:10
  • 26. Define a dataframe with without a dictionary.mp4
    02:15
  • 27. Define a dataframe using list comprehension.mp4
    00:58
  • 1. Format the values of a dataframe to percentages.mp4
    03:39
  • 2. Format the elements of a dataframe to 1 decimal point.mp4
    00:54
  • 3. Apply a function to the elements of a series dataframe.mp4
    01:31
  • 1. Prevent data transfer from dataframe to dictionary.mp4
    09:51
  • 2. Prevent duplicate values in a dataframe.mp4
    14:30
  • 3. Prevent duplicate values while using True, Break.mp4
    03:48
  • 4. Break, continue, pass.mp4
    07:16
  • 5. For, else.mp4
    05:41
  • 6. While, For equivalence.mp4
    02:12
  • 7. While True.mp4
    04:03
  • 8. While , Else.mp4
    02:29
  • 1. How to define it.mp4
    04:27
  • 2. How to rename a column.mp4
    02:30
  • 3. How to remove a level.mp4
    01:12
  • 4. Print levels in a single cell (merge cells).mp4
    03:26
  • 5. From merged (dataframe) to unmerged (excel).mp4
    07:15
  • 6. How to implement iteritems.mp4
    03:39
  • 1. If, elif.mp4
    02:55
  • 2. inline if statement.mp4
    05:47
  • 3. Print statement with if-else embedded.mp4
    02:29
  • 1. AND, OR, FALSE, TRUE.mp4
    02:18
  • 2. NOT.mp4
    02:33
  • 3. The De Morgan Laws.mp4
    06:15
  • 4. Comparison of int, str, Float, Bool.mp4
    06:11
  • 5. Type conversions int , float, str, bool.mp4
    10:03
  • 6. Combining NOT with empty string lists.mp4
    05:45
  • 7. The meaning of x = None, [] , .mp4
    01:11
  • 8. Difference between is and =.mp4
    04:25
  • 1. Iterate via for-loop.mp4
    02:56
  • 2. Join two tuples.mp4
    01:04
  • 3. Define a tuple.mp4
    02:07
  • 4. Sort a tuple.mp4
    02:30
  • 5. Enumerate a tuple (enumerate, index).mp4
    02:06
  • 6. Find the frequency of elements (count).mp4
    00:40
  • 7. Tuple immutability.mp4
    00:59
  • 1. Remove NaN values by deleting rowscolumns.mp4
    02:21
  • 2. How to find if a dataframe has NaN values.mp4
    03:43
  • 3. Use min count to sum in presence of NaN values.mp4
    05:32
  • 4. Place NaN values in a dataframe , manually.mp4
    02:22
  • 5. Sum rows by ignoring NaN (skipna).mp4
    02:24
  • 6. Replace missing values with 0.mp4
    01:46
  • 1. Modelling VLOOKUP in Python.mp4
    08:42
  • 2. Modelling SUMIFS in Python.mp4
    12:16
  • 3. Modelling AVERAGEIFS in Python.mp4
    06:00
  • 1. Evaluate String expressions using eval().mp4
    09:25
  • 2. Remove trailing characters using rstrip, lstrip.mp4
    04:04
  • 3. Break a string in sets using wrap.mp4
    03:13
  • 4. Select part of a string.mp4
    02:31
  • 5. Remove white space using replace ().mp4
    02:27
  • 6. Search for multiple occurrences of a subtext.mp4
    05:19
  • 7. Select specific characters from a column using str.mp4
    03:13
  • 8. Replace a character or a word from inside a string.mp4
    01:17
  • 9. Unite strings from inside a list using join.mp4
    00:56
  • 10. Multiline strings .mp4
    01:29
  • 11. Formating strings and f-strings (format).mp4
    08:18
  • 12. Count how many times a character is inside a string.mp4
    00:54
  • 13. in, find() with strings.mp4
    03:08
  • 14. right-justify text using rjust.mp4
    00:57
  • 1. Using the function globals().mp4
    03:37
  • 2. Multiple assignment.mp4
    02:39
  • 3. Use global to change variables.mp4
    08:57
  • 1. Define a set, addremove elements.mp4
    02:54
  • 2. Convert a liststring to a set.mp4
    01:33
  • 3. Difference of two sets symmetric difference.mp4
    10:48
  • 4. Set comprehension.mp4
    03:08
  • 5. Subset, superset, proper subsetsuperset.mp4
    03:37
  • 6. Intersection and union.mp4
    05:55
  • 1. Edit strings inside series using. .str[].mp4
    09:58
  • 2. Create a series object of a constant value.mp4
    03:31
  • 3. Select a column as Series versus as a Dataframe.mp4
    02:18
  • 4. Broadcasting (saving) an array to a Series.mp4
    03:03
  • 1. Concatenate two arrays.mp4
    02:07
  • 2. linspace (equally spaced numbers).mp4
    00:59
  • 3. Reshaping the array.mp4
    07:32
  • 4. 1D, 2D, 3D arrays from lists.mp4
    02:26
  • 5. Modify elements of an array.mp4
    02:01
  • 6. Use arange to make 1D and 2D arrays.mp4
    02:42
  • 7. eye, ones, zeros.mp4
    01:50
  • 8. flattening an array.mp4
    02:56
  • 1. Docstring.mp4
    02:14
  • 2. Count how many times a function is called.mp4
    05:02
  • 3. How to return many values from a function.mp4
    02:14
  • 4. Default values for parameters.mp4
    03:06
  • 5. A function calling another function.mp4
    01:49
  • 1. Update a DateTimeIndex.mp4
    05:00
  • 2. The Workalendar package for Country dates.mp4
    02:16
  • 3. Timedelta() for time conversions.mp4
    02:09
  • 1. Use name .mp4
    02:34
  • 2. Check if the datatype is int float str NaN None.mp4
    04:16
  • 3. dtypes, astype() and the type of the dataframe elements.mp4
    10:55
  • 4. Converting elements of a column via astype.mp4
    00:56
  • 1. Define and loop through a dictionary.mp4
    03:48
  • 2. Find the number of elements in a dictionary.mp4
    01:42
  • 3. Convert to a listset of keysvalues.mp4
    04:42
  • 4. Convert a dataframe to a dictionary.mp4
    07:28
  • 5. Print the first 6 elements of a dictionary.mp4
    03:51
  • 6. What it means for x in dictionary.mp4
    02:04
  • 7. Convert a single value into a dictionary (keys).mp4
    02:52
  • 8. Avoid errors when a key is not found (get).mp4
    17:27
  • 9. Join two dictionaries ().mp4
    04:14
  • 10. Dictionary comprehension.mp4
    01:46
  • 11. Delete a key from a dictionary.mp4
    00:26
  • 12. Sort a dictionary.mp4
    02:07
  • 13. Mutability of a dictionary.mp4
    00:53
  • 1. Default dictionaries.mp4
    12:14
  • 1. Trigonometry, infinity, pi.mp4
    02:31
  • 2. regular division, integer division, modulo division, , %.mp4
    03:36
  • 3. dot product of 2 arrays.mp4
    03:47
  • 1. Try Except block.mp4
    08:25
  • 2. the finally statement.mp4
    10:47
  • 3. Raise errors based on user input.mp4
    06:34
  • 4. How to raise own errors.mp4
    03:04
  • 1. random choice.mp4
    01:17
  • 2. randint.mp4
    00:53
  • 3. randrange.mp4
    00:55
  • 4. random.random, random.seed.mp4
    04:18
  • 5. random.sample (sample without replacement).mp4
    02:16
  • 6. Fix the random seeds using a function.mp4
    05:49
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 178
    • duration 13:11:23
    • Release Date 2023/12/04