Companies Home Search Profile

ELEC2000 - Circuits, Signals & Systems

Focused View

Jung-Chang Liou

2:55:54

90 View
  • 1. Course Overview.mp4
    04:01
  • 2. Course Preview.mp4
    09:54
  • 1.1 Lec1_handouts.pdf
  • 1. Lecture 1 RC Circuit Analysis 1 - A deep dive into capacitors.mp4
    14:47
  • 2.1 Lec2_handouts.pdf
  • 2. Lecture 2 RC Circuit Analysis 2 - Analyzing a simple RC circuit.mp4
    15:45
  • 3. RC Circuit Analysis Revision Quiz.html
  • 4.1 Lec3_handouts.pdf
  • 4. Lecture 3 RL Circuit Analysis 1 - A deep dive into inductors.mp4
    09:40
  • 5.1 Lec4_handouts.pdf
  • 5. Lecture 4 RL Circuit Analysis 2 - Analyzing a simple RL circuit.mp4
    15:22
  • 6. RL Circuit Analysis Revision Quiz.html
  • 7. Assignment 1 - Circuit Analysis Using First Principles.html
  • 1.1 Lec5_handouts.pdf
  • 1. Lecture 5 Introducing Laplace Transform.mp4
    10:56
  • 2.1 Lec6_handouts.pdf
  • 2. Lecture 6 Laplace Transform in Circuit Analysis.mp4
    17:05
  • 3. Laplace Transform Revision Quiz.html
  • 4.1 Lec7_handouts.pdf
  • 4. Lecture 7 Element Impedance.mp4
    09:54
  • 5.1 Lec8_handouts.pdf
  • 5. Lecture 8 AC Circuit Analysis & Poles.mp4
    12:14
  • 6. Element Impedance & Poles Revision Quiz.html
  • 1.1 Lec9_handouts.pdf
  • 1. Lecture 9 Systems and Transfer Functions.mp4
    12:45
  • 2.1 Lec10_handouts.pdf
  • 2. Lecture 10 Frequency Response.mp4
    16:38
  • 3. System Analysis Revision Quiz.html
  • 1.1 Lec11_handouts.pdf
  • 1. Lecture 11 Fourier Series & Fourier Transform.mp4
    09:24
  • 2. Signal Analysis Revision Quiz.html
  • 1.1 Lec12_handouts.pdf
  • 1. Lecture 12 Analogue & Digital Filter Design.mp4
    17:29
  • Description


    ELEC2000 covers detailed analysis on RLC circuits, signals and systems using Laplace and Fourier Transform

    What You'll Learn?


    • Understand the physical structure and mathematical models of capacitors and inductors
    • Analyse RL, RC & RLC circuits using the first principles
    • Understand fundamentally what Laplace transform is and does
    • Simplify circuit analysis using Forced & Natural Response, element impedance and Laplace Transform
    • Identify what a system is and why we use transfer functions
    • Understand what Fourier Series & Fourier Transform are & do
    • Design a simple digital filter using certain programs
    • Understand how an analogue filter is designed and its limitations

    Who is this for?


  • Anyone who has completed the introduction to Electrical Engineering Course and who wants to learn more about circuit analysis
  • Anyone who wishes to learn about Control Systems, Signal Processing or Advanced Electronics must learn the fundamentals covered in this course
  • Anyone who wishes to have a clear understanding of Laplace Transform, Fourier Series/Transform, Transfer Function, Frequency Response, Natural & Forced Response and Poles & Zeros
  • More details


    Description

    The goal of this course is for students who have completed Introduction to EE course to continue improving their understandings and skills on Circuit Analysis. It covers all the important techniques that you will need during your entire Electrical Engineering career, including Laplace Transform, Element Impedance, Forced & Natural Response, Poles & Zeros, Transfer Function, Frequency Response, Fourier Series & Fourier Transform and Filter Design.


    This course starts with dissecting capacitors and inductors. You will have a much solid understanding of the working principles of these two fundamentally important elements. This first section will also help you revise some of the important concepts that you learned from the previous course, such as Ohm's Law, KVL and KCL. You will learn how to analyse simple RL & RC circuit using the first principles.


    The second section of the course introduces the powerful Laplace Transform. You will learn what it is, why we study it and how to apply it on circuit analysis. You will also see how we go from Laplace Transform to Element Impedance and how we use Laplace in conjunction with Forced & Natural Response. Here we will clarify many questions that most students have over the years. For example, what is the difference between the impedance jwL and sL?


    The third section focuses on Systems. You will learn what Systems and Transfer Functions are, how it helps us to have flexible input and output signal, and how to combine systems mathematically. Here we will go through producing a Bode plot and a Phase Plot (i.e. Frequency Response) using the Transfer Function.


    Section 4 deals with Signals. You will learn the difference between Fourier Series & Fourier Transform. We will also learn to apply Fourier Transform on a simulated signal as well as on an audio file using a Python program.


    Lastly, we will go through a practical example of designing a filter. You will see how we can use all the knowledge that we acquired to design a digital and an analogue filter.

    Who this course is for:

    • Anyone who has completed the introduction to Electrical Engineering Course and who wants to learn more about circuit analysis
    • Anyone who wishes to learn about Control Systems, Signal Processing or Advanced Electronics must learn the fundamentals covered in this course
    • Anyone who wishes to have a clear understanding of Laplace Transform, Fourier Series/Transform, Transfer Function, Frequency Response, Natural & Forced Response and Poles & Zeros

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Jung-Chang Liou
    Jung-Chang Liou
    Instructor's Courses
    With many years working in the fields of Electrical Engineering as a research assistant, design engineer and a teacher, I have learned to deliver both the theoretical and practical knowledge to my students in the most direct and simple way. In my course, You will find that all the lectures follow through one another and I will always include the reason for learning a particular theory.My philosophy of teaching is to encourage students to start and finish a course by giving them just enough information at the beginning. Then I will provide more details as students begin to think, to try, to encounter problems and to question. This type of active learning has proven to be most effective through my years of teaching which is why I use it here. So learn actively and ask questions! My goal is for students to learn Electrical Engineering in the most straightforward, simple and efficient way.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 14
    • duration 2:55:54
    • Release Date 2023/02/13