Companies Home Search Profile
Event- and Data-Centric Enterprise Risk-Adjusted Return Management: A Banking Practitioner’s Handbook
Event- and Data-Centric Enterprise Risk-Adjusted Return Management: A Banking Practitioner’s Handbook
Download pdf
Event- and Data-Centric Enterprise Risk-Adjusted Return Management: A Banking Practitioner’s Handbook

Event- and Data-Centric Enterprise Risk-Adjusted Return Management: A Banking Practitioner’s Handbook

Category

Publication

Apress

0 View
'
ISBN-10
ISBN-13
9781484274392
Publisher
Apress
Price
0
File Type
PDF
Page No.
0

From the Back Cover

Take a holistic view of enterprise risk-adjusted return management in banking. This book recommends that a bank transform its siloed operating model into an agile enterprise model. It offers an event-driven, process-based, data-centric approach to help banks plan and implement an enterprise risk-adjusted return model (ERRM), keeping the focus on business events, processes, and a loosely coupled enterprise service architecture.

Most banks suffer from a lack of good quality data for risk-adjusted return management. This book provides an enterprise data management methodology that improves data quality by defining and using data ontology and taxonomy. It extends the data narrative with an explanation of the characteristics of risk data, the usage of machine learning, and provides an enterprise knowledge management methodology for risk-return optimization. The book provides numerous examples for process automation, data analytics, event management, knowledge management, and improvements to risk quantification.

The book provides guidance on the underlying knowledge areas of banking, enterprise risk management, enterprise architecture, technology, event management, processes, and data science. The first part of the book explains the current state of banking architecture and its limitations. After defining a target model, it explains an approach to determine the "gap" and the second part of the book guides banks on how to implement the enterprise risk-adjusted return model.

You will:

  • Know what causes siloed architecture, and its impact
  • Implement an enterprise risk-adjusted return model (ERRM)
  • Choose enterprise architecture and technology
  • Define a reference enterprise architecture
  • Understand enterprise data management methodology
  • Define and use an enterprise data ontology and taxonomy
  • Create a multi-dimensional enterprise risk data model
  • Understand the relevance of event-driven architecture from business generation and risk management perspectives
  • Implement advanced analytics and knowledge management capabilities
--This text refers to the paperback edition.

About the Author

Kannan Subramanian R is a Chartered Accountant with 35+ years of experience in the banking and financial services industry and has experience with financial markets in USA, Europe, and Asia. He has worked for Standard Chartered Bank and for leading banking solution companies, including the leading global risk management solution provider, Algorithmics (now part of IBM Risk Management & Analytics). He advises System Design Consulting Prospero AG on strategic matters and in the design of risk management and analytical solutions. He has successfully leveraged his academic and work experience in the area of banking, including risk management and banking automation.
Dr. Sudheesh Kumar Kattumannil is an Associate Professor at the Indian Statistical Institute in Chennai, India. His research interests include survival analysis, reliability theory, variance inequality, moment identity, estimation of income inequality measures, measurement error problems, and empirical likelihood inference. He has published on topics related to statistics, mathematics, and risk management. He is a recipient of the Jan Tinbergen Award for young statisticians (International Statistical Association, The Netherlands) as well as a recipient of an Indo-US fellowship.  --This text refers to the paperback edition.

Similar Books

Other Authors' Books

Other Publishing Books

User Reviews
Rating
0
0
0
0
0
average 0
Total votes0