Companies Home Search Profile

Distributed Machine Learning Patterns, Video Edition

Focused View

6:20:35

339 View
  • 001. Part 1. Basic concepts and background.mp4
    01:04
  • 002. Chapter 1. Introduction to distributed machine learning systems.mp4
    09:50
  • 003. Chapter 1. Distributed systems.mp4
    03:30
  • 004. Chapter 1. Distributed machine learning systems.mp4
    05:54
  • 005. Chapter 1. What we will learn in this book.mp4
    03:04
  • 006. Chapter 1. Summary.mp4
    00:44
  • 007. Part 2. Patterns of distributed machine learning systems.mp4
    03:25
  • 008. Chapter 2. Data ingestion patterns.mp4
    05:38
  • 009. Chapter 2. The Fashion-MNIST dataset.mp4
    04:40
  • 010. Chapter 2. Batching pattern.mp4
    12:06
  • 011. Chapter 2. Sharding pattern Splitting extremely large datasets among multiple machines.mp4
    13:56
  • 012. Chapter 2. Caching pattern.mp4
    10:15
  • 013. Chapter 2. Answers to exercises.mp4
    00:43
  • 014. Chapter 2. Summary.mp4
    00:44
  • 015. Chapter 3. Distributed training patterns.mp4
    05:02
  • 016. Chapter 3. Parameter server pattern Tagging entities in 8 million YouTube videos.mp4
    14:42
  • 017. Chapter 3. Collective communication pattern.mp4
    15:46
  • 018. Chapter 3. Elasticity and fault-tolerance pattern.mp4
    09:52
  • 019. Chapter 3. Answers to exercises.mp4
    01:03
  • 020. Chapter 3. Summary.mp4
    00:49
  • 021. Chapter 4. Model serving patterns.mp4
    04:31
  • 022. Chapter 4. Replicated services pattern Handling the growing number of serving requests.mp4
    11:59
  • 023. Chapter 4. Sharded services pattern.mp4
    10:55
  • 024. Chapter 4. The event-driven processing pattern.mp4
    20:02
  • 025. Chapter 4. Answers to exercises.mp4
    00:58
  • 026. Chapter 4. Summary.mp4
    00:50
  • 027. Chapter 5. Workflow patterns.mp4
    07:38
  • 028. Chapter 5. Fan-in and fan-out patterns Composing complex machine learning workflows.mp4
    13:49
  • 029. Chapter 5. Synchronous and asynchronous patterns Accelerating workflows with concurrency.mp4
    10:22
  • 030. Chapter 5. Step memoization pattern Skipping redundant workloads via memoized steps.mp4
    11:08
  • 031. Chapter 5. Answers to exercises.mp4
    02:07
  • 032. Chapter 5. Summary.mp4
    00:41
  • 033. Chapter 6. Operation patterns.mp4
    06:18
  • 034. Chapter 6. Scheduling patterns Assigning resources effectively in a shared cluster.mp4
    20:47
  • 035. Chapter 6. Metadata pattern Handle failures appropriately to minimize the negative effect on users.mp4
    12:48
  • 036. Chapter 6. Answers to exercises.mp4
    01:06
  • 037. Chapter 6. Summary.mp4
    00:33
  • 038. Part 3. Building a distributed machine learning workflow.mp4
    01:40
  • 039. Chapter 7. Project overview and system architecture.mp4
    06:32
  • 040. Chapter 7. Data ingestion.mp4
    08:30
  • 041. Chapter 7. Model training.mp4
    05:54
  • 042. Chapter 7. Model serving.mp4
    04:26
  • 043. Chapter 7. End-to-end workflow.mp4
    07:35
  • 044. Chapter 7. Answers to exercises.mp4
    00:38
  • 045. Chapter 7. Summary.mp4
    00:43
  • 046. Chapter 8. Overview of relevant technologies.mp4
    12:55
  • 047. Chapter 8. Kubernetes The distributed container orchestration system.mp4
    07:57
  • 048. Chapter 8. Kubeflow Machine learning workloads on Kubernetes.mp4
    10:33
  • 049. Chapter 8. Argo Workflows Container-native workflow engine.mp4
    10:38
  • 050. Chapter 8. Answers to exercises.mp4
    00:49
  • 051. Chapter 8. Summary.mp4
    00:31
  • 052. Chapter 9. A complete implementation.mp4
    08:52
  • 053. Chapter 9. Model training.mp4
    13:24
  • 054. Chapter 9. Model serving.mp4
    09:11
  • 055. Chapter 9. The end-to-end workflow.mp4
    09:34
  • 056. Chapter 9. Summary.mp4
    00:54
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 56
    • duration 6:20:35
    • Release Date 2024/06/14