Companies Home Search Profile

Digital Signal Processing (DSP) From Ground Up™ in Python

Focused View

Israel Gbati,BHM Engineering Academy

13:04:08

26 View
  • 001 Downloading Python.mp4
    01:49
  • 002 Installing Python.mp4
    01:59
  • 003 Using IDLE.mp4
    02:52
  • 004 Installing Python packages.mp4
    03:37
  • 005 Testing the packages.mp4
    07:17
  • 001 0-Hello.zip
  • 001 Printing statements.mp4
    06:06
  • 002 1-Variable.zip
  • 002 Variables.mp4
    07:19
  • 003 2-lists.zip
  • 003 Lists.mp4
    05:17
  • 004 3-operators.zip
  • 004 Operators.mp4
    12:23
  • 005 4-Conditions-loops.zip
  • 005 Conditions.mp4
    08:15
  • 006 5-loops.zip
  • 006 For Loops.mp4
    07:28
  • 007 5-loops.zip
  • 007 While Loops.mp4
    05:26
  • 008 6-Function.zip
  • 008 Functions.mp4
    07:44
  • 009 8-Dictionary.zip
  • 009 Dictionaries.mp4
    10:17
  • 010 7-Classes.zip
  • 010 Classes and Objects.mp4
    12:23
  • 001 Signal Statistics and Noise.mp4
    04:07
  • 002 9-matplotlib.zip
  • 002 Coding Plotting signals with pyplot.mp4
    07:35
  • 003 Coding Importing signals and dealing with subplots.mp4
    12:31
  • 003 mysignals.zip
  • 004 11-signal-generation.zip
  • 004 Coding Generating signals.mp4
    12:07
  • 005 Mean and Standard Deviation.mp4
    04:06
  • 006 1-Mean-v1.zip
  • 006 Coding Computing the Signal Mean.mp4
    04:42
  • 007 1-Mean-v2.zip
  • 007 Coding Developing the Signal Mean algorithm.mp4
    05:33
  • 008 2-Variance-v1.zip
  • 008 Coding Computing the Signal Variance.mp4
    01:57
  • 009 2-Variance-v2.zip
  • 009 Coding Developing the Signal Variance algorithm.mp4
    07:27
  • 010 3-Standard-Deviation-v1.zip
  • 010 Coding Computing the Standard Deviation.mp4
    02:19
  • 011 3-Standard-Deviation-v2.zip
  • 011 Coding Developing the Signal Standard Deviation algorithm.mp4
    03:06
  • 001 Nyquist Theorem ( Sampling Theorem ).mp4
    09:24
  • 002 The Passive Low-Pass Filter.mp4
    07:30
  • 003 The Passive High-Pass Filter.mp4
    04:48
  • 004 The Active Filter.mp4
    05:49
  • 005 The Bessel, Chebyshev and Butterworth filters.mp4
    06:44
  • 001 Introduction to Linear Systems.mp4
    04:47
  • 002 Understanding Superposition.mp4
    05:00
  • 003 Impulse and Step Decomposition.mp4
    04:31
  • 001 Introduction to Convolution.mp4
    03:22
  • 002 The Convolution Operation.mp4
    06:44
  • 003 Examinging the Output of Convolution.mp4
    04:45
  • 004 The Convolution Sum Equation.mp4
    02:05
  • 005 A Closer look at the Delta function.mp4
    05:41
  • 006 0-Examine-signals.zip
  • 006 Coding Examining the signals.mp4
    07:19
  • 006 mysignals.zip
  • 007 1-Convolution-v1.zip
  • 007 Coding Computing the convolution of two signals.mp4
    07:07
  • 008 1-Convolution-v2.zip
  • 008 Coding Developing the Convolution algorithm.mp4
    21:11
  • 009 2-Deconvolution.zip
  • 009 Coding Computing the De-convolution of two signals.mp4
    06:19
  • 010 3-Correlation.zip
  • 010 Coding Correlation.mp4
    07:17
  • 010 mysignals.zip
  • 011 The Identity property of convolution.mp4
    01:30
  • 012 The Running Sum and First Difference.mp4
    01:55
  • 013 5-Running-Sum.zip
  • 013 Coding Computing the running sum of a signal.mp4
    08:04
  • 014 5-Running-Sum-v2.zip
  • 014 Coding Developing the Running Sum algorithm.mp4
    06:53
  • 015 6-First-Difference.zip
  • 015 Coding Computing the First Difference of a signal.mp4
    03:12
  • 016 6-First-Difference-v2.zip
  • 016 Coding Developing the First Difference algorithm.mp4
    06:27
  • 001 Introduction to Fourier Analysis.mp4
    05:29
  • 002 The DFT Engine.mp4
    04:11
  • 003 Understanding Forward and Inverse DFT.mp4
    04:32
  • 004 1-DFT.zip
  • 004 Coding Developing the Discrete Fourier Transform (DFT) algorithm.mp4
    15:53
  • 004 mysignals.zip
  • 005 2-DFT-magnitude.zip
  • 005 Coding Developing the DFT magnitude algorithm.mp4
    10:03
  • 006 3-IDFT.zip
  • 006 Coding Developing the Inverse Discrete Fourier Transform (IDFT) algorithm.mp4
    20:35
  • 007 4-IDFT-ecg.zip
  • 007 Coding Computing the IDFT of an ECG signal.mp4
    05:25
  • 008 Symmetry between Time domain and frequency domain -Duality.mp4
    00:55
  • 009 Polar Notation.mp4
    02:50
  • 010 Introduction to Spectral Analysis.mp4
    02:31
  • 011 The Frequency Response.mp4
    03:34
  • 001 The Complex Number System.mp4
    02:05
  • 002 Polar Representation of Complex Numbers.mp4
    01:35
  • 003 Eulers Relation.mp4
    01:35
  • 004 Representation of Sinusoids.mp4
    01:57
  • 005 Representing Systems.mp4
    01:34
  • 001 Introduction to Complex Fourier Transform.mp4
    01:43
  • 002 Mathematical Equivalence.mp4
    01:38
  • 003 The Complex DFT Equation.mp4
    00:36
  • 004 Comparing Real DFT and Complex DFT.mp4
    03:17
  • 001 An Overview of how FFT works.mp4
    08:17
  • 002 Understanding the complexity of calculating DFT directly.mp4
    02:35
  • 003 How the Decimation -in-Time FFT Algorithm works.mp4
    09:00
  • 004 Coding Computing the FFT of a signal.mp4
    11:51
  • 004 fft.zip
  • 004 mysignals.zip
  • 001 Introduction to Digital Filters.mp4
    03:14
  • 002 The Filter Kernel.mp4
    01:49
  • 003 The Impulse,Step and Frequency response.mp4
    01:16
  • 004 Understanding the Logarithmic scale and decibels.mp4
    02:59
  • 005 Information representations of a signal.mp4
    03:57
  • 006 Time domain parameters.mp4
    04:20
  • 007 Frequency domain parameters.mp4
    01:25
  • 008 Designing digital filters using the spectral inversion method.mp4
    04:37
  • 009 Designing digital filters using the spectral reversal method.mp4
    02:50
  • 010 Classification of digital filters.mp4
    01:56
  • 001 The Moving Average Filter.mp4
    04:11
  • 002 The Multiple Pass Moving Average Filter.mp4
    02:20
  • 003 The Recursive Moving Average Filter.mp4
    04:33
  • 004 1-median-filter.zip
  • 004 Coding Smoothing signals with the median filter.mp4
    07:19
  • 005 Coding FIR filter application project (Part I).mp4
    07:59
  • 006 Coding FIR filter application project (Part II).mp4
    12:09
  • 007 2-filtfilt.zip
  • 007 Coding FIR filter application project (Part III).mp4
    08:18
  • 001 Introduction to Recursive Filters.mp4
    00:46
  • 002 The Recursion Equation.mp4
    01:50
  • 003 1-freqz.zip
  • 003 Coding Computing the frequency response of a filter.mp4
    05:14
  • 004 2-cheby1.zip
  • 004 Coding Computing the frequency response of a Type I Chebyshev Bandpass Filter.mp4
    05:01
  • 005 1-butter.zip
  • 005 Coding Creating a Butterworth lowpass filter.mp4
    05:21
  • 006 2-cbeby1.zip
  • 006 Coding Creating a Type I Chebyshev lowpass filter.mp4
    06:30
  • 007 3-cbeby2.zip
  • 007 Coding Creating a Type II Chebyshev lowpass filter.mp4
    04:15
  • 008 4-elliptic.zip
  • 008 Coding Creating an Elliptic lowpass filter.mp4
    05:46
  • 009 5-bessel.zip
  • 009 Coding Creating a Bessel lowpass filter.mp4
    06:09
  • 010 Coding IIR filter application project -Butterworth filter (Part I).mp4
    07:13
  • 011 Coding IIR filter application project -Butterworth filter (Part II).mp4
    10:53
  • 012 9-Butterwoth-implementation.zip
  • 012 Coding IIR filter application project -Butterworth filter (Part III).mp4
    06:38
  • 013 Coding Designing an FIR filter with a Kaiser Window (Part III).mp4
    04:42
  • 014 The Single-Pole Recursive Filter.mp4
    02:52
  • 015 Digital Chebyshev Filters.mp4
    01:57
  • 001 Introduction to Windowed-Sinc Filters.mp4
    00:47
  • 002 The Sinc Function and the Truncated Sinc Filter.mp4
    03:15
  • 003 The Blackman window.mp4
    01:00
  • 004 The Hamming and Blackman window equations.mp4
    02:34
  • 005 Designing the Windowed Sinc filter.mp4
    02:34
  • 006 Coding Designing an FIR filter with a Kaiser Window (Part I).mp4
    12:15
  • 007 10-fir-filter-implemetation.zip
  • 007 Coding Designing an FIR filter with a Kaiser Window (Part II).mp4
    09:56
  • 008 3-get-window.zip
  • 008 Coding Generating windows.mp4
    08:27
  • 009 1-barthan.zip
  • 009 Coding Creating the Barlett-Hann Window.mp4
    05:27
  • 010 2-bartlett.zip
  • 010 Coding Creating the Barlette Window.mp4
    01:14
  • 011 3-blackman.zip
  • 011 Coding Creating the Blackman Window.mp4
    01:10
  • 012 3-blackman-harris.zip
  • 012 Coding Creating the Blackman-Harris Window.mp4
    01:29
  • 013 4-bohman.zip
  • 013 5-boxcar.zip
  • 013 6-chebwin.zip
  • 013 7-cosine.zip
  • 013 Creating Bohman,Boxcar, Chebyshev, Cosine ,Flattop and Gaussian Windows.mp4
    06:27
  • 014 10-hamming.zip
  • 014 11-Hann.zip
  • 014 Coding Creating the Hamming and Hanning Windows.mp4
    01:42
  • 015 12-kaiser.zip
  • 015 Coding Creating the Kaiser Window.mp4
    01:33
  • 016 13-nuttall.zip
  • 016 14-parzen.zip
  • 016 Coding Creating the Nuttall and Parzen Windows.mp4
    02:09
  • 017 15-slepian.zip
  • 017 16-traing.zip
  • 017 Coding Creating the Slepian and the Triangular Window.mp4
    02:55
  • 001 Coding Experimenting with the Forward-Backward filter.mp4
    11:47
  • 002 4-detrend.zip
  • 002 Coding De-trending a signal.mp4
    06:54
  • 003 Coding Comparing the performance of different Scipy filters (Part I).mp4
    05:28
  • 004 11-filtfilt-vs-lfilter.zip
  • 004 Coding Comparing the performance of different Scipy filters (Part II).mp4
    08:06
  • 005 3-remez.zip
  • 005 Coding Computing the frequency response of a Remez filter.mp4
    07:02
  • 001 4-Correlation-Match-Filter-Implementation.zip
  • 001 Coding Building a match filter with cross-correlation.mp4
    16:22
  • 001 Understanding how the Overlap-Add method works.mp4
    04:09
  • 002 Understanding how FFT-Convolution works.mp4
    04:04
  • 001 1-Transfer-Functions.zip
  • 001 Coding Creating a Transfer Function.mp4
    06:11
  • 002 2-ZeroesPolesGain.zip
  • 002 Coding ZerosPolesGain.mp4
    04:53
  • 003 3-freqresponse.zip
  • 003 Coding Frequency response of a LTI.mp4
    05:44
  • 004 4-bode.zip
  • 004 Coding Computing the bode plot of a LTI system.mp4
    04:16
  • 005 5-Impulse.zip
  • 005 Coding Computing the impulse response of a LTI system.mp4
    03:51
  • 001 5-interpolation.zip
  • 001 Coding Linear and cubic interpolation.mp4
    07:38
  • 002 6-UnivariateSpline.zip
  • 002 Coding Working with splines.mp4
    10:30
  • 003 7-rbf.zip
  • 003 Coding Comparing Rbf with UnivariateSpline.mp4
    10:32
  • 001 Coding Generating a gausspulse.mp4
    05:34
  • 002 Coding Generating square waves and pulse-width modulated sine waves.mp4
    08:07
  • Description


    Practical DSP in Python : Over 70 examples, FFT,Filter Design, IIR,FIR, Window Filters,Convolution,Linear Systems etc

    What You'll Learn?


    • Develop the Convolution Kernel algorithm in Python
    • Design and develop 17 different window filters in Python
    • Develop the Discrete Fourier Transform (DFT) algorithm in Python
    • Design and develop Type I Chebyshev filters in Python
    • Design and develop Type II Chebyshev filters in Python
    • Develop the Inverse Discrete Fourier Transform (IDFT) algorithm in Pyhton
    • Develop the Fast Fourier Transform (FFT) algorithm in Python
    • Perform spectral analysis on ECG signals in Python
    • Design and develop Windowed-Sinc filters in Python
    • Design and develop Finite Impulse Response (FIR) filters in Python
    • Design and develop Infinite Impulse Response (IIR) filters in Python
    • Develop the First Difference algorithm in Python
    • Develop the Running Sum algorithm in Python
    • Develop the Moving Average filter algorithm in Python
    • Develop the Recursive Moving Average filter algorithm in Python
    • Design and develop Butterworth filters in Python
    • Design and develop Match filters in Python
    • Design and develop Bessel filters in Python
    • Simulate Linear Time Invariant (LTI) Systems in Python
    • Perform linear and cubic interpolation in Python

    Who is this for?


  • People working in the field of signal processing
  • University students taking classes in signal processing
  • Python developers who wish to expand their skills
  • People who want to understand signal processing practically and apply it to their respective fields.
  • What You Need to Know?


  • You will need just a good working computer for this course
  • More details


    Description

    With a programming based approach, this course is designed to give you a solid foundation in the most useful aspects of Digital Signal Processing (DSP) in an engaging and easy to follow way. The goal of this course is to present practical techniques while avoiding  obstacles of abstract mathematical theories. To achieve this goal, the DSP techniques are explained in plain language, not simply proven to be true through mathematical derivations.


    Still keeping it simple, this course comes in different programming languages and hardware architectures so that students can put the techniques to practice using a programming language or hardware architecture  of their choice. This version of the course uses the Python programming language.


    By the end of this course you should be able develop the Convolution Kernel algorithm in python,  develop 17 different  types  of window  filters in python, develop the Discrete Fourier Transform (DFT) algorithm in python, develop the Inverse Discrete Fourier Transform (IDFT) algorithm in pyhton, design and develop Finite Impulse Response (FIR) filters in python, design and develop Infinite Impulse Response (IIR) filters in python, develop Type I Chebyshev filters in python, develop Type II Chebyshev filters in python, perform spectral analysis on ECG signals in python,  develop Butterworth filters in python, develop Match filters in python,simulate Linear Time Invariant (LTI) Systems in python, even give a lecture on DSP and so much more. Please take a look at the full course curriculum.

    Who this course is for:

    • People working in the field of signal processing
    • University students taking classes in signal processing
    • Python developers who wish to expand their skills
    • People who want to understand signal processing practically and apply it to their respective fields.

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Israel Gbati
    Israel Gbati
    Instructor's Courses
    Professional embedded firmware developer. Been doing this for years, can't even remember when it started. My areas of expertise include real-time systems development, low level development, medical device architecture, embedded signal processing and embedded AI. Most of my work is based on Arm Cortex-Microcontrollers. And Oh! I am a normal guy.
    BHM Engineering Academy
    BHM Engineering Academy
    Instructor's Courses
    Bohobiom Engineering  is a  21st century Computer Engineering online Academy based in London U.K.We have experienced instructors in the areas of Assembly Programming, Hardware Engineering, Signal & Image Processing, Embedded Firmware Development, Deep Learning and other high demand 21st century skills.As of today we have trained over 35,000 happy pupils. Please take a look at our available courses and message us if you have any questions.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 141
    • duration 13:04:08
    • English subtitles has
    • Release Date 2024/04/15