Companies Home Search Profile

Deep Learning: Python Deep Learning Masterclass

Focused View

AI Sciences,AI Sciences Team

64:18:59

21 View
  • 1 - Links for the Courses Materials and Codes.html
  • 2 - Introduction Introduction to Instructor.mp4
    02:53
  • 3 - Introduction Introduction to Course.mp4
    03:36
  • 4 - Basics of Deep Learning Problem to Solve Part 1.mp4
    02:00
  • 5 - Basics of Deep Learning Problem to Solve Part 2.mp4
    02:26
  • 6 - Basics of Deep Learning Problem to Solve Part 3.mp4
    01:42
  • 7 - Basics of Deep Learning Linear Equation.mp4
    03:18
  • 8 - Basics of Deep Learning Linear Equation Vectorized.mp4
    03:00
  • 9 - Basics of Deep Learning 3D Feature Space.mp4
    03:46
  • 10 - Basics of Deep Learning N Dimensional Space.mp4
    02:31
  • 11 - Basics of Deep Learning Theory of Perceptron.mp4
    01:46
  • 12 - Basics of Deep Learning Implementing Basic Perceptron.mp4
    05:37
  • 13 - Basics of Deep Learning Logical Gates for Perceptrons.mp4
    02:46
  • 14 - Basics of Deep Learning Perceptron Training Part 1.mp4
    01:40
  • 15 - Basics of Deep Learning Perceptron Training Part 2.mp4
    03:41
  • 16 - Basics of Deep Learning Learning Rate.mp4
    03:14
  • 17 - Basics of Deep Learning Perceptron Training Part 3.mp4
    03:31
  • 18 - Basics of Deep Learning Perceptron Algorithm.mp4
    01:00
  • 19 - Basics of Deep Learning Coading Perceptron Algo Data Reading Visualization.mp4
    07:22
  • 20 - Basics of Deep Learning Coading Perceptron Algo Perceptron Step.mp4
    07:22
  • 21 - Basics of Deep Learning Coading Perceptron Algo Training Perceptron.mp4
    06:43
  • 22 - Basics of Deep Learning Coading Perceptron Algo Visualizing the Results.mp4
    03:53
  • 23 - Basics of Deep Learning Problem with Linear Solutions.mp4
    02:32
  • 24 - Basics of Deep Learning Solution to Problem.mp4
    01:03
  • 25 - Basics of Deep Learning Error Functions.mp4
    02:21
  • 26 - Basics of Deep Learning Discrete vs Continuous Error Function.mp4
    02:25
  • 27 - Basics of Deep Learning Sigmoid Function.mp4
    03:01
  • 28 - Basics of Deep Learning MultiClass Problem.mp4
    01:18
  • 29 - Basics of Deep Learning Problem of Negative Scores.mp4
    03:02
  • 30 - Basics of Deep Learning Need of Softmax.mp4
    01:22
  • 31 - Basics of Deep Learning Coding Softmax.mp4
    04:06
  • 32 - Basics of Deep Learning One Hot Encoding.mp4
    02:41
  • 33 - Basics of Deep Learning Maximum Likelihood Part 1.mp4
    05:30
  • 34 - Basics of Deep Learning Maximum Likelihood Part 2.mp4
    03:48
  • 35 - Basics of Deep Learning Cross Entropy.mp4
    04:06
  • 36 - Basics of Deep Learning Cross Entropy Formulation.mp4
    07:38
  • 37 - Basics of Deep Learning Multi Class Cross Entropy.mp4
    03:51
  • 38 - Basics of Deep Learning Cross Entropy Implementation.mp4
    04:14
  • 39 - Basics of Deep Learning Sigmoid Function Implementation.mp4
    00:57
  • 40 - Basics of Deep Learning Output Function Implementation.mp4
    02:10
  • 41 - Deep Learning Introduction to Gradient Decent.mp4
    05:21
  • 42 - Deep Learning Convex Functions.mp4
    02:31
  • 43 - Deep Learning Use of Derivatives.mp4
    03:13
  • 44 - Deep Learning How Gradient Decent Works.mp4
    03:34
  • 45 - Deep Learning Gradient Step.mp4
    01:54
  • 46 - Deep Learning Logistic Regression Algorithm.mp4
    01:37
  • 47 - Deep Learning Data Visualization and Reading.mp4
    06:11
  • 48 - Deep Learning Updating Weights in Python.mp4
    04:14
  • 49 - Deep Learning Implementing Logistic Regression.mp4
    12:44
  • 50 - Deep Learning Visualization and Results.mp4
    08:43
  • 51 - Deep Learning Gradient Decent vs Perceptron.mp4
    04:35
  • 52 - Deep Learning Linear to Non Linear Boundaries.mp4
    04:42
  • 53 - Deep Learning Combining Probabilities.mp4
    02:07
  • 54 - Deep Learning Weighted Sums.mp4
    03:02
  • 55 - Deep Learning Neural Network Architecture.mp4
    12:09
  • 56 - Deep Learning Layers and DEEP Networks.mp4
    04:44
  • 57 - Deep LearningMulti Class Classification.mp4
    02:48
  • 58 - Deep Learning Basics of Feed Forward.mp4
    07:51
  • 59 - Deep Learning Feed Forward for DEEP Net.mp4
    04:57
  • 60 - Deep Learning Deep Learning Algo Overview.mp4
    01:57
  • 61 - Deep Learning Basics of Back Propagation.mp4
    06:33
  • 62 - Deep Learning Updating Weights.mp4
    02:46
  • 63 - Deep Learning Chain Rule for BackPropagation.mp4
    05:53
  • 64 - Deep Learning Sigma Prime.mp4
    02:23
  • 65 - Deep Learning Data Analysis NN Implementation.mp4
    05:25
  • 66 - Deep Learning One Hot Encoding NN Implementation.mp4
    03:11
  • 67 - Deep Learning Scaling the Data NN Implementation.mp4
    01:48
  • 68 - Deep Learning Splitting the Data NN Implementation.mp4
    04:55
  • 69 - Deep Learning Helper Functions NN Implementation.mp4
    02:18
  • 70 - Deep Learning Training NN Implementation.mp4
    12:25
  • 71 - Deep Learning Testing NN Implementation.mp4
    03:21
  • 72 - Optimizations Underfitting vs Overfitting.mp4
    05:19
  • 73 - Optimizations Early Stopping.mp4
    03:51
  • 74 - Optimizations Quiz.mp4
    00:58
  • 75 - Optimizations Solution Regularization.mp4
    05:59
  • 76 - Optimizations L1 L2 Regularization.mp4
    03:13
  • 77 - Optimizations Dropout.mp4
    02:59
  • 78 - Optimizations Local Minima Problem.mp4
    02:55
  • 79 - Optimizations Random Restart Solution.mp4
    04:27
  • 81 - Optimizations Other Activation Functions.mp4
    03:19
  • 82 - Final Project Final Project Part 1.mp4
    11:20
  • 83 - Final Project Final Project Part 2.mp4
    13:16
  • 84 - Final Project Final Project Part 3.mp4
    12:58
  • 85 - Final Project Final Project Part 4.mp4
    12:19
  • 86 - Final Project Final Project Part 5.mp4
    08:06
  • 87 - Link to Github to get the Python Notebooks.html
  • 88 - Introduction Instructor Introduction.mp4
    02:19
  • 89 - Introduction Why CNN.mp4
    07:00
  • 90 - Introduction Focus of the Course.mp4
    07:12
  • 91 - Image Processing Gray Scale Images.mp4
    07:21
  • 92 - Image Processing Gray Scale Images Quiz.mp4
    00:27
  • 93 - Image Processing Gray Scale Images Solution.mp4
    00:48
  • 94 - Image Processing RGB Images.mp4
    07:35
  • 95 - Image Processing RGB Images Quiz.mp4
    00:36
  • 96 - Image Processing RGB Images Solution.mp4
    00:45
  • 97 - Image Processing Reading and Showing Images in Python.mp4
    09:24
  • 98 - Image Processing Reading and Showing Images in Python Quiz.mp4
    00:22
  • 99 - Image Processing Reading and Showing Images in Python Solution.mp4
    00:30
  • 100 - Image Processing Converting an Image to Grayscale in Python.mp4
    07:55
  • 101 - Image Processing Converting an Image to Grayscale in Python Quiz.mp4
    00:35
  • 102 - Image Processing Converting an Image to Grayscale in Python Solution.mp4
    00:58
  • 103 - Image Processing Image Formation.mp4
    05:37
  • 104 - Image Processing Image Formation Quiz.mp4
    00:31
  • 105 - Image Processing Image Formation Solution.mp4
    00:33
  • 106 - Image Processing Image Blurring 1.mp4
    10:47
  • 107 - Image Processing Image Blurring 1 Quiz.mp4
    00:43
  • 108 - Image Processing Image Blurring 1 Solution.mp4
    00:29
  • 109 - Image Processing Image Blurring 2.mp4
    08:23
  • 110 - Image Processing Image Blurring 2 Quiz.mp4
    00:29
  • 111 - Image Processing Image Blurring 2 Solution.mp4
    00:47
  • 112 - Image Processing General Image Filtering.mp4
    04:48
  • 113 - Image Processing Convolution.mp4
    05:13
  • 114 - Image Processing Edge Detection.mp4
    06:43
  • 115 - Image Processing Image Sharpening.mp4
    03:40
  • 116 - Image Processing Implementation of Image Blurring Edge Detection Image Sharpening in Python.mp4
    16:54
  • 117 - Image Processing Parameteric Shape Detection.mp4
    07:42
  • 118 - Image Processing Image Processing Activity.mp4
    03:48
  • 119 - Image Processing Image Processing Activity Solution.mp4
    12:03
  • 120 - Object Detection Introduction to Object Detection.mp4
    06:38
  • 121 - Object Detection Classification PipleLine.mp4
    10:59
  • 122 - Object Detection Classification PipleLine Quiz.mp4
    00:23
  • 123 - Object Detection Classification PipleLine Solution.mp4
    00:40
  • 124 - Object Detection Sliding Window Implementation.mp4
    07:19
  • 125 - Object Detection Shift Scale Rotation Invariance.mp4
    09:41
  • 126 - Object Detection Shift Scale Rotation Invariance Exercise.mp4
    15:38
  • 127 - Object Detection Person Detection.mp4
    09:42
  • 128 - Object Detection HOG Features.mp4
    07:02
  • 129 - Object Detection HOG Features Exercise.mp4
    10:50
  • 130 - Object Detection Hand Engineering vs CNNs.mp4
    08:40
  • 131 - Object Detection Object Detection Activity.mp4
    04:52
  • 132 - Deep Neural Network Overview Neuron and Perceptron.mp4
    10:39
  • 133 - Deep Neural Network Overview DNN Architecture.mp4
    07:30
  • 134 - Deep Neural Network Overview DNN Architecture Quiz.mp4
    00:50
  • 135 - Deep Neural Network Overview DNN Architecture Solution.mp4
    01:11
  • 136 - Deep Neural Network Overview FeedForward FullyConnected MLP.mp4
    04:26
  • 137 - Deep Neural Network Overview Calculating Number of Weights of DNN.mp4
    06:04
  • 138 - Deep Neural Network Overview Calculating Number of Weights of DNN Quiz.mp4
    00:22
  • 139 - Deep Neural Network Overview Calculating Number of Weights of DNN Solution.mp4
    00:59
  • 140 - Deep Neural Network Overview Number of Nuerons vs Number of Layers.mp4
    08:26
  • 141 - Deep Neural Network Overview Discriminative vs Generative Learning.mp4
    05:11
  • 142 - Deep Neural Network Overview Universal Approximation Therorem.mp4
    06:20
  • 143 - Deep Neural Network Overview Why Depth.mp4
    04:14
  • 144 - Deep Neural Network Overview Decision Boundary in DNN.mp4
    05:48
  • 145 - Deep Neural Network Overview Decision Boundary in DNN Quiz.mp4
    00:52
  • 146 - Deep Neural Network Overview Decision Boundary in DNN Solution.mp4
    02:46
  • 147 - Deep Neural Network Overview BiasTerm.mp4
    05:12
  • 148 - Deep Neural Network Overview BiasTerm Quiz.mp4
    00:29
  • 149 - Deep Neural Network Overview BiasTerm Solution.mp4
    00:52
  • 150 - Deep Neural Network Overview Activation Function.mp4
    08:13
  • 151 - Deep Neural Network Overview Activation Function Quiz.mp4
    00:36
  • 152 - Deep Neural Network Overview Activation Function Solution.mp4
    01:11
  • 153 - Deep Neural Network Overview DNN Training Parameters.mp4
    11:00
  • 154 - Deep Neural Network Overview DNN Training Parameters Quiz.mp4
    00:36
  • 155 - Deep Neural Network Overview DNN Training Parameters Solution.mp4
    00:42
  • 156 - Deep Neural Network Overview Gradient Descent.mp4
    08:12
  • 157 - Deep Neural Network Overview BackPropagation.mp4
    11:07
  • 158 - Deep Neural Network Overview Training DNN Animantion.mp4
    03:42
  • 159 - Deep Neural Network Overview Weigth Initialization.mp4
    09:25
  • 160 - Deep Neural Network Overview Weigth Initialization Quiz.mp4
    00:38
  • 161 - Deep Neural Network Overview Weigth Initialization Solution.mp4
    01:01
  • 162 - Deep Neural Network Overview Batch miniBatch Stocastic Gradient Descent.mp4
    08:34
  • 163 - Deep Neural Network Overview Batch Normalization.mp4
    05:28
  • 164 - Deep Neural Network Overview Rprop and Momentum.mp4
    12:26
  • 165 - Deep Neural Network Overview Rprop and Momentum Quiz.mp4
    01:05
  • 166 - Deep Neural Network Overview Rprop and Momentum Solution.mp4
    01:14
  • 167 - Deep Neural Network Overview Convergence Animation.mp4
    03:39
  • 168 - Deep Neural Network Overview DropOut Early Stopping and Hyperparameters.mp4
    13:39
  • 169 - Deep Neural Network Overview DropOut Early Stopping and Hyperparameters Quiz.mp4
    01:08
  • 170 - Deep Neural Network Overview DropOut Early Stopping and Hyperparameters Solution.mp4
    02:20
  • 171 - Deep Neural Network Architecture Convolution Revisited.mp4
    08:16
  • 172 - Deep Neural Network Architecture Implementing Convolution in Python Revisited.mp4
    07:07
  • 173 - Deep Neural Network Architecture Why Convolution.mp4
    07:02
  • 174 - Deep Neural Network Architecture Filters Padding Strides.mp4
    08:04
  • 175 - Deep Neural Network Architecture Padding Image.mp4
    10:36
  • 176 - Deep Neural Network Architecture Pooling Tensors.mp4
    06:25
  • 177 - Deep Neural Network Architecture CNN Example.mp4
    07:04
  • 178 - Deep Neural Network Architecture Convolution and Pooling Details.mp4
    08:30
  • 179 - Deep Neural Network Architecture Maxpooling Exercise.mp4
    04:11
  • 180 - Deep Neural Network Architecture NonVectorized Implementations of Conv2d and Pool2d.mp4
    18:59
  • 181 - Deep Neural Network Architecture Deep Neural Network Architecture Activity.mp4
    02:28
  • 182 - Gradient Descent in CNNs Example Setup.mp4
    09:15
  • 183 - Gradient Descent in CNNs Why Derivaties.mp4
    10:28
  • 184 - Gradient Descent in CNNs Why Derivaties Quiz.mp4
    00:54
  • 185 - Gradient Descent in CNNs Why Derivaties Solution.mp4
    03:05
  • 186 - Gradient Descent in CNNs What is Chain Rule.mp4
    07:58
  • 187 - Gradient Descent in CNNs Applying Chain Rule.mp4
    09:05
  • 188 - Gradient Descent in CNNs Gradients of MaxPooling Layer.mp4
    08:20
  • 189 - Gradient Descent in CNNs Gradients of MaxPooling Layer Quiz.mp4
    00:57
  • 190 - Gradient Descent in CNNs Gradients of MaxPooling Layer Solution.mp4
    01:48
  • 191 - Gradient Descent in CNNs Gradients of Convolutional Layer.mp4
    09:01
  • 192 - Gradient Descent in CNNs Extending To Multiple Filters.mp4
    05:25
  • 193 - Gradient Descent in CNNs Extending to Multiple Layers.mp4
    06:50
  • 194 - Gradient Descent in CNNs Extending to Multiple Layers Quiz.mp4
    01:24
  • 195 - Gradient Descent in CNNs Extending to Multiple Layers Solution.mp4
    05:41
  • 196 - Gradient Descent in CNNs Implementation in Numpy ForwardPass.mp4
    08:20
  • 197 - Gradient Descent in CNNs Implementation in Numpy BackwardPass 1.mp4
    06:47
  • 198 - Gradient Descent in CNNs Implementation in Numpy BackwardPass 2.mp4
    04:37
  • 199 - Gradient Descent in CNNs Implementation in Numpy BackwardPass 3.mp4
    09:07
  • 200 - Gradient Descent in CNNs Implementation in Numpy BackwardPass 4.mp4
    12:21
  • 201 - Gradient Descent in CNNs Implementation in Numpy BackwardPass 5.mp4
    19:41
  • 202 - Gradient Descent in CNNs Gradient Descent in CNNs Activity.mp4
    02:00
  • 203 - Introduction to TensorFlow Introduction.mp4
    09:57
  • 204 - Introduction to TensorFlow FashionMNIST Example Plan Neural Network.mp4
    22:44
  • 205 - Introduction to TensorFlow FashionMNIST Example CNN.mp4
    20:04
  • 206 - Introduction to TensorFlow Introduction to TensorFlow Activity.mp4
    01:24
  • 207 - Classical CNNs LeNet.mp4
    07:24
  • 208 - Classical CNNs LeNet Quiz.mp4
    01:05
  • 209 - Classical CNNs LeNet Solution.mp4
    01:50
  • 210 - Classical CNNs AlexNet.mp4
    09:31
  • 211 - Classical CNNs VGG.mp4
    05:54
  • 212 - Classical CNNs InceptionNet.mp4
    08:11
  • 213 - Classical CNNs GoogLeNet.mp4
    05:59
  • 214 - Classical CNNs Resnet.mp4
    09:56
  • 215 - Classical CNNs Classical CNNs Activity.mp4
    01:39
  • 216 - Transfer Learning What is Transfer learning.mp4
    05:03
  • 217 - Transfer Learning Why Transfer Learning.mp4
    04:26
  • 218 - Transfer Learning Practical Tips.mp4
    07:10
  • 219 - Transfer Learning Project in TensorFlow.mp4
    38:03
  • 220 - Transfer Learning ImageNet Challenge.mp4
    03:53
  • 221 - Transfer Learning Transfer Learning Activity.mp4
    01:11
  • 222 - Yolo Image Classfication Revisited.mp4
    05:05
  • 223 - Yolo Sliding Window Object Localization.mp4
    06:36
  • 224 - Yolo Sliding Window Efficient Implementation.mp4
    06:59
  • 225 - Yolo Yolo Introduction.mp4
    07:07
  • 226 - Yolo Yolo Training Data Generation.mp4
    06:15
  • 227 - Yolo Yolo Anchor Boxes.mp4
    08:34
  • 228 - Yolo Yolo Algorithm.mp4
    06:06
  • 229 - Yolo Yolo Non Maxima Supression.mp4
    05:22
  • 230 - Yolo RCNN.mp4
    04:11
  • 231 - Yolo Yolo Activity.mp4
    01:45
  • 232 - Face Verification Problem Setup.mp4
    06:35
  • 233 - Face Verification Project Implementation.mp4
    21:27
  • 234 - Face Verification Face Verification Activity.mp4
    00:57
  • 235 - Neural Style Transfer Problem Setup.mp4
    10:32
  • 236 - Neural Style Transfer Implementation Tensorflow Hub.mp4
    08:44
  • 237 - Link to oneDrive and Github to get the Python Notebooks.html
  • 238 - Introduction Introduction to Instructor and Aisciences.mp4
    12:18
  • 239 - Introduction Introduction To Instructor.mp4
    02:19
  • 240 - Introduction Focus of the Course.mp4
    08:55
  • 241 - Applications of RNN Motivation Human Activity Recognition.mp4
    08:05
  • 242 - Applications of RNN Motivation Image Captioning.mp4
    05:51
  • 243 - Applications of RNN Motivation Machine Translation.mp4
    07:56
  • 244 - Applications of RNN Motivation Speech Recognition.mp4
    05:31
  • 245 - Applications of RNN Motivation Stock Price Predictions.mp4
    05:58
  • 246 - Applications of RNN Motivation When to Model RNN.mp4
    18:47
  • 247 - Applications of RNN Motivation Activity.mp4
    03:19
  • 248 - DNN Overview Why PyTorch.mp4
    04:17
  • 249 - DNN Overview PyTorch Installation and Tensors Introduction.mp4
    10:32
  • 250 - DNN Overview Automatic Diffrenciation Pytorch New.mp4
    07:36
  • 251 - DNN Overview Why DNNs in Machine Learning.mp4
    04:13
  • 252 - DNN Overview Representational Power and Data Utilization Capacity of DNN.mp4
    07:13
  • 253 - DNN Overview Perceptron.mp4
    05:08
  • 254 - DNN Overview Perceptron Exercise.mp4
    02:36
  • 255 - DNN Overview Perceptron Exercise Solution.mp4
    03:16
  • 256 - DNN Overview Perceptron Implementation.mp4
    07:26
  • 257 - DNN Overview DNN Architecture.mp4
    03:52
  • 258 - DNN Overview DNN Architecture Exercise.mp4
    02:06
  • 259 - DNN Overview DNN Architecture Exercise Solution.mp4
    04:33
  • 260 - DNN Overview DNN ForwardStep Implementation.mp4
    08:21
  • 261 - DNN Overview DNN Why Activation Function Is Required.mp4
    04:47
  • 262 - DNN Overview DNN Why Activation Function Is Required Exercise.mp4
    01:48
  • 263 - DNN Overview DNN Why Activation Function Is Required Exercise Solution.mp4
    03:39
  • 264 - DNN Overview DNN Properties Of Activation Function.mp4
    06:04
  • 265 - DNN Overview DNN Activation Functions In Pytorch.mp4
    03:49
  • 266 - DNN Overview DNN What Is Loss Function.mp4
    07:10
  • 267 - DNN Overview DNN What Is Loss Function Exercise.mp4
    00:58
  • 268 - DNN Overview DNN What Is Loss Function Exercise Solution.mp4
    04:25
  • 269 - DNN Overview DNN What Is Loss Function Exercise 02.mp4
    00:54
  • 270 - DNN Overview DNN What Is Loss Function Exercise 02 Solution.mp4
    03:15
  • 271 - DNN Overview DNN Loss Function In Pytorch.mp4
    05:45
  • 272 - DNN Overview DNN Gradient Descent.mp4
    05:58
  • 273 - DNN Overview DNN Gradient Descent Exercise.mp4
    03:03
  • 274 - DNN Overview DNN Gradient Descent Exercise Solution.mp4
    04:15
  • 275 - DNN Overview DNN Gradient Descent Implementation.mp4
    06:51
  • 276 - DNN Overview DNN Gradient Descent Stochastic Batch Minibatch.mp4
    07:07
  • 277 - DNN Overview DNN Implemenation Gradient Step.mp4
    04:02
  • 278 - DNN Overview DNN Implemenation Stochastic Gradient Descent.mp4
    13:53
  • 279 - DNN Overview DNN Gradient Descent Summary.mp4
    02:38
  • 280 - DNN Overview DNN Implemenation Batch Gradient Descent.mp4
    06:46
  • 281 - DNN Overview DNN Implemenation Minibatch Gradient Descent.mp4
    09:04
  • 282 - DNN Overview DNN Implemenation In PyTorch.mp4
    15:19
  • 283 - DNN Overview DNN Weights Initializations.mp4
    04:35
  • 284 - DNN Overview DNN Learning Rate.mp4
    04:03
  • 285 - DNN Overview DNN Batch Normalization.mp4
    02:05
  • 286 - DNN Overview DNN batch Normalization Implementation.mp4
    02:41
  • 287 - DNN Overview DNN Optimizations.mp4
    04:08
  • 288 - DNN Overview DNN Dropout.mp4
    03:58
  • 289 - DNN Overview DNN Dropout In PyTorch.mp4
    02:03
  • 290 - DNN Overview DNN Early Stopping.mp4
    03:34
  • 291 - DNN Overview DNN Hyperparameters.mp4
    03:33
  • 292 - DNN Overview DNN Pytorch CIFAR10 Example.mp4
    15:56
  • 293 - RNN Architecture Introduction to Module.mp4
    05:42
  • 294 - RNN Architecture Fixed Length Memory Model.mp4
    10:06
  • 295 - RNN Architecture Fixed Length Memory Model Exercise.mp4
    00:46
  • 296 - RNN Architecture Fixed Length Memory Model Exercise Solution Part 01.mp4
    03:37
  • 297 - RNN Architecture Fixed Length Memory Model Exercise Solution Part 02.mp4
    03:54
  • 298 - RNN Architecture Infinite Memory Architecture.mp4
    10:44
  • 299 - RNN Architecture Infinite Memory Architecture Exercise.mp4
    01:07
  • 300 - RNN Architecture Infinite Memory Architecture Solution.mp4
    04:45
  • 301 - RNN Architecture Weight Sharing.mp4
    14:51
  • 302 - RNN Architecture Notations.mp4
    08:49
  • 303 - RNN Architecture ManyToMany Model.mp4
    11:57
  • 304 - RNN Architecture ManyToMany Model Exercise 01.mp4
    02:05
  • 305 - RNN Architecture ManyToMany Model Solution 01.mp4
    02:40
  • 306 - RNN Architecture ManyToMany Model Exercise 02.mp4
    00:49
  • 307 - RNN Architecture ManyToMany Model Solution 02.mp4
    03:20
  • 308 - RNN Architecture ManyToOne Model.mp4
    07:57
  • 309 - RNN Architecture OneToMany Model Exercise.mp4
    00:32
  • 310 - RNN Architecture OneToMany Model Solution.mp4
    02:31
  • 311 - RNN Architecture OneToMany Model.mp4
    05:56
  • 312 - RNN Architecture ManyToOne Model Exercise.mp4
    01:49
  • 313 - RNN Architecture ManyToOne Model Solution.mp4
    01:22
  • 314 - RNN Architecture Activity Many to One.mp4
    06:47
  • 315 - RNN Architecture Activity Many to One Exercise.mp4
    00:40
  • 316 - RNN Architecture Activity Many to One Solution.mp4
    01:50
  • 317 - RNN Architecture ManyToMany Different Sizes Model.mp4
    09:07
  • 318 - RNN Architecture Activity Many to Many Nmt.mp4
    04:50
  • 319 - RNN Architecture Models Summary.mp4
    03:34
  • 320 - RNN Architecture Deep RNNs.mp4
    08:13
  • 321 - RNN Architecture Deep RNNs Exercise.mp4
    00:51
  • 322 - RNN Architecture Deep RNNs Solution.mp4
    02:50
  • 323 - Gradient Decsent in RNN Introduction to Gradient Descent Module.mp4
    07:51
  • 324 - Gradient Decsent in RNN Example Setup.mp4
    08:20
  • 325 - Gradient Decsent in RNN Equations.mp4
    06:03
  • 326 - Gradient Decsent in RNN Equations Exercise.mp4
    01:45
  • 327 - Gradient Decsent in RNN Equations Solution.mp4
    02:14
  • 328 - Gradient Decsent in RNN Loss Function.mp4
    08:06
  • 329 - Gradient Decsent in RNN Why Gradients.mp4
    06:06
  • 330 - Gradient Decsent in RNN Why Gradients Exercise.mp4
    00:26
  • 331 - Gradient Decsent in RNN Why Gradients Solution.mp4
    02:49
  • 332 - Gradient Decsent in RNN Chain Rule.mp4
    07:28
  • 333 - Gradient Decsent in RNN Chain Rule in Action.mp4
    05:58
  • 334 - Gradient Decsent in RNN BackPropagation Through Time.mp4
    09:37
  • 335 - Gradient Decsent in RNN Activity.mp4
    02:19
  • 336 - RNN implementation Automatic Diffrenciation.mp4
    04:07
  • 337 - RNN implementation Automatic Diffrenciation Pytorch.mp4
    08:26
  • 338 - RNN implementation Language Modeling Next Word Prediction Vocabulary Index.mp4
    04:04
  • 339 - RNN implementation Language Modeling Next Word Prediction Vocabulary Index Embeddings.mp4
    03:16
  • 340 - RNN implementation Language Modeling Next Word Prediction RNN Architecture.mp4
    04:09
  • 341 - RNN implementation Language Modeling Next Word Prediction Python 1.mp4
    07:12
  • 342 - RNN implementation Language Modeling Next Word Prediction Python 2.mp4
    09:02
  • 343 - RNN implementation Language Modeling Next Word Prediction Python 3.mp4
    07:27
  • 344 - RNN implementation Language Modeling Next Word Prediction Python 4.mp4
    05:33
  • 345 - RNN implementation Language Modeling Next Word Prediction Python 5.mp4
    04:35
  • 346 - RNN implementation Language Modeling Next Word Prediction Python 6.mp4
    13:34
  • 347 - Sentiment Classification using RNN Vocabulary Implementation.mp4
    09:46
  • 348 - Sentiment Classification using RNN Vocabulary Implementation Helpers.mp4
    05:50
  • 349 - Sentiment Classification using RNN Vocabulary Implementation From File.mp4
    06:26
  • 350 - Sentiment Classification using RNN Vectorizer.mp4
    05:17
  • 351 - Sentiment Classification using RNN RNN Setup 1.mp4
    07:20
  • 352 - Sentiment Classification using RNN RNN Setup 2.mp4
    03:27
  • 353 - Sentiment Classification using RNN WhatNext.mp4
    03:27
  • 354 - Vanishing Gradients in RNN Introduction to Better RNNs Module.mp4
    07:23
  • 355 - Vanishing Gradients in RNN Introduction Vanishing Gradients in RNN.mp4
    07:52
  • 356 - Vanishing Gradients in RNN GRU.mp4
    11:59
  • 357 - Vanishing Gradients in RNN GRU Optional.mp4
    06:08
  • 358 - Vanishing Gradients in RNN LSTM.mp4
    08:44
  • 359 - Vanishing Gradients in RNN LSTM Optional.mp4
    06:04
  • 360 - Vanishing Gradients in RNN Bidirectional RNN.mp4
    08:23
  • 361 - Vanishing Gradients in RNN Attention Model.mp4
    10:31
  • 362 - Vanishing Gradients in RNN Attention Model Optional.mp4
    06:34
  • 363 - TensorFlow Introduction to TensorFlow.mp4
    09:57
  • 364 - TensorFlow TensorFlow Text Classification Example using RNN.mp4
    25:55
  • 365 - Project I Book Writer Introduction.mp4
    12:15
  • 366 - Project I Book Writer Data Mapping.mp4
    14:59
  • 367 - Project I Book Writer Modling RNN Architecture.mp4
    17:52
  • 368 - Project I Book Writer Modling RNN Model in TensorFlow.mp4
    11:15
  • 369 - Project I Book Writer Modling RNN Model Training.mp4
    07:47
  • 370 - Project I Book Writer Modling RNN Model Text Generation.mp4
    13:28
  • 371 - Project I Book Writer Activity.mp4
    07:44
  • 372 - Project II Stock Price Prediction Problem Statement.mp4
    06:06
  • 373 - Project II Stock Price Prediction Data Set.mp4
    11:53
  • 374 - Project II Stock Price Prediction Data Prepration.mp4
    19:06
  • 375 - Project II Stock Price Prediction RNN Model Training and Evaluation.mp4
    20:05
  • 376 - Project II Stock Price Prediction Activity.mp4
    06:15
  • 377 - Further Readings and Resourses Further Readings and Resourses 1.mp4
    10:30
  • 378 - Links for the Courses Materials and Codes.html
  • 379 - Introduction Introduction to Course.mp4
    00:55
  • 380 - Introduction Introduction to Instructor.mp4
    05:44
  • 381 - Introduction Introduction to CoInstructor.mp4
    01:30
  • 382 - Introduction Course Introduction.mp4
    11:16
  • 383 - IntroductionRegular Expressions What Is Regular Expression.mp4
    05:56
  • 384 - IntroductionRegular Expressions Why Regular Expression.mp4
    06:31
  • 385 - IntroductionRegular Expressions ELIZA Chatbot.mp4
    04:23
  • 386 - IntroductionRegular Expressions Python Regular Expression Package.mp4
    04:24
  • 387 - Meta CharactersRegular Expressions Meta Characters.mp4
    02:27
  • 388 - Meta CharactersRegular Expressions Meta Characters Bigbrackets Exercise.mp4
    04:19
  • 389 - Meta CharactersRegular Expressions Meta Characters Bigbrackets Exercise Solution.mp4
    03:59
  • 390 - Meta CharactersRegular Expressions Meta Characters Bigbrackets Exercise 2.mp4
    02:11
  • 391 - Meta CharactersRegular Expressions Meta Characters Bigbrackets Exercise 2 Solution.mp4
    04:37
  • 392 - Meta CharactersRegular Expressions Meta Characters Cap.mp4
    03:18
  • 393 - Meta CharactersRegular Expressions Meta Characters Cap Exercise 3.mp4
    02:03
  • 394 - Meta CharactersRegular Expressions Meta Characters Cap Exercise 3 Solution.mp4
    04:44
  • 395 - Meta CharactersRegular Expressions Backslash.mp4
    05:02
  • 396 - Meta CharactersRegular Expressions Backslash Continued.mp4
    07:59
  • 397 - Meta CharactersRegular Expressions Backslash Continued 01.mp4
    03:51
  • 398 - Meta CharactersRegular Expressions Backslash Squared Brackets Exercise.mp4
    01:38
  • 399 - Meta CharactersRegular Expressions Backslash Squared Brackets Exercise Solution.mp4
    03:59
  • 400 - Meta CharactersRegular Expressions Backslash Squared Brackets Exercise Another Solution.mp4
    04:43
  • 401 - Meta CharactersRegular Expressions Backslash Exercise.mp4
    01:43
  • 402 - Meta CharactersRegular Expressions Backslash Exercise Solution And Special Sequences Exercise.mp4
    05:12
  • 403 - Meta CharactersRegular Expressions Solution And Special Sequences Exercise Solution.mp4
    04:57
  • 404 - Meta CharactersRegular Expressions Meta Character Asterisk.mp4
    05:18
  • 405 - Meta CharactersRegular Expressions Meta Character Asterisk Exercise.mp4
    04:54
  • 406 - Meta CharactersRegular Expressions Meta Character Asterisk Exercise Solution.mp4
    05:04
  • 407 - Meta CharactersRegular Expressions Meta Character Asterisk Homework.mp4
    04:28
  • 408 - Meta CharactersRegular Expressions Meta Character Asterisk Greedymatching.mp4
    05:54
  • 409 - Meta CharactersRegular Expressions Meta Character Plus And Questionmark.mp4
    05:46
  • 410 - Meta CharactersRegular Expressions Meta Character Curly Brackets Exercise.mp4
    03:25
  • 411 - Meta CharactersRegular Expressions Meta Character Curly Brackets Exercise Solution.mp4
    05:18
  • 412 - Pattern Objects Pattern Objects.mp4
    05:05
  • 413 - Pattern Objects Pattern Objects Match Method Exersize.mp4
    02:43
  • 414 - Pattern Objects Pattern Objects Match Method Exersize Solution.mp4
    07:11
  • 415 - Pattern Objects Pattern Objects Match Method Vs Search Method.mp4
    05:18
  • 416 - Pattern Objects Pattern Objects Finditer Method.mp4
    03:20
  • 417 - Pattern Objects Pattern Objects Finditer Method Exersize Solution.mp4
    06:22
  • 418 - More Meta Characters Meta Characters Logical Or.mp4
    06:29
  • 419 - More Meta Characters Meta Characters Beginning And End Patterns.mp4
    04:57
  • 420 - More Meta Characters Meta Characters Paranthesis.mp4
    07:03
  • 421 - String Modification String Modification.mp4
    03:49
  • 422 - String Modification Word Tokenizer Using Split Method.mp4
    04:34
  • 423 - String Modification Sub Method Exercise.mp4
    04:44
  • 424 - String Modification Sub Method Exercise Solution.mp4
    04:30
  • 425 - Words and Tokens What Is A Word.mp4
    04:41
  • 426 - Words and Tokens Definition Of Word Is Task Dependent.mp4
    05:20
  • 427 - Words and Tokens Vocabulary And Corpus.mp4
    05:38
  • 428 - Words and Tokens Tokens.mp4
    03:14
  • 429 - Words and Tokens Tokenization In Spacy.mp4
    09:10
  • 430 - Sentiment Classification Yelp Reviews Classification Mini Project Introduction.mp4
    05:35
  • 431 - Sentiment Classification Yelp Reviews Classification Mini Project Vocabulary Initialization.mp4
    06:48
  • 432 - Sentiment Classification Yelp Reviews Classification Mini Project Adding Tokens To Vocabulary.mp4
    04:54
  • 433 - Sentiment Classification Yelp Reviews Classification Mini Project Look Up Functions In Vocabulary.mp4
    05:57
  • 434 - Sentiment Classification Yelp Reviews Classification Mini Project Building Vocabulary From Data.mp4
    09:17
  • 435 - Sentiment Classification Yelp Reviews Classification Mini Project One Hot Encoding.mp4
    06:51
  • 436 - Sentiment Classification Yelp Reviews Classification Mini Project One Hot Encoding Implementation.mp4
    09:47
  • 437 - Sentiment Classification Yelp Reviews Classification Mini Project Encoding Documents.mp4
    06:50
  • 438 - Sentiment Classification Yelp Reviews Classification Mini Project Encoding Documents Implementation.mp4
    06:28
  • 439 - Sentiment Classification Yelp Reviews Classification Mini Project Train Test Splits.mp4
    04:20
  • 440 - Sentiment Classification Yelp Reviews Classification Mini Project Featurecomputation.mp4
    06:08
  • 441 - Sentiment Classification Yelp Reviews Classification Mini Project Classification.mp4
    10:45
  • 442 - Language Independent Tokenization Tokenization In Detial Introduction.mp4
    04:28
  • 443 - Language Independent Tokenization Tokenization Is Hard.mp4
    05:16
  • 444 - Language Independent Tokenization Tokenization Byte Pair Encoding.mp4
    06:08
  • 445 - Language Independent Tokenization Tokenization Byte Pair Encoding Example.mp4
    08:33
  • 446 - Language Independent Tokenization Tokenization Byte Pair Encoding On Test Data.mp4
    07:14
  • 447 - Language Independent Tokenization Tokenization Byte Pair Encoding Implementation Getpaircounts.mp4
    08:11
  • 448 - Language Independent Tokenization Tokenization Byte Pair Encoding Implementation Mergeincorpus.mp4
    07:49
  • 449 - Language Independent Tokenization Tokenization Byte Pair Encoding Implementation BFE Training.mp4
    06:10
  • 450 - Language Independent Tokenization Tokenization Byte Pair Encoding Implementation BFE Encoding.mp4
    06:25
  • 451 - Language Independent Tokenization Tokenization Byte Pair Encoding Implementation BFE Encoding One Pair.mp4
    09:11
  • 452 - Language Independent Tokenization Tokenization Byte Pair Encoding Implementation BFE Encoding One Pair 1.mp4
    07:53
  • 453 - Text Nomalization Word Normalization Case Folding.mp4
    04:43
  • 454 - Text Nomalization Word Normalization Lematization.mp4
    06:48
  • 455 - Text Nomalization Word Normalization Stemming.mp4
    02:31
  • 456 - Text Nomalization Word Normalization Sentence Segmentation.mp4
    06:27
  • 457 - String Matching and Spelling Correction Spelling Correction Minimum Edit Distance Intro.mp4
    07:59
  • 458 - String Matching and Spelling Correction Spelling Correction Minimum Edit Distance Example.mp4
    09:04
  • 459 - String Matching and Spelling Correction Spelling Correction Minimum Edit Distance Table Filling.mp4
    09:10
  • 460 - String Matching and Spelling Correction Spelling Correction Minimum Edit Distance Dynamic Programming.mp4
    07:17
  • 461 - String Matching and Spelling Correction Spelling Correction Minimum Edit Distance Psudocode.mp4
    03:55
  • 462 - String Matching and Spelling Correction Spelling Correction Minimum Edit Distance Implementation.mp4
    06:57
  • 463 - String Matching and Spelling Correction Spelling Correction Minimum Edit Distance Implementation Bugfixing.mp4
    02:40
  • 464 - String Matching and Spelling Correction Spelling Correction Implementation.mp4
    07:42
  • 465 - Language Modeling What Is A Language Model.mp4
    05:50
  • 466 - Language Modeling Language Model Formal Definition.mp4
    06:31
  • 467 - Language Modeling Language Model Curse Of Dimensionality.mp4
    04:27
  • 468 - Language Modeling Language Model Markov Assumption And NGrams.mp4
    07:06
  • 469 - Language Modeling Language Model Implementation Setup.mp4
    04:24
  • 470 - Language Modeling Language Model Implementation Ngrams Function.mp4
    08:42
  • 471 - Language Modeling Language Model Implementation Update Counts Function.mp4
    05:46
  • 472 - Language Modeling Language Model Implementation Probability Model Funciton.mp4
    06:35
  • 473 - Language Modeling Language Model Implementation Reading Corpus.mp4
    12:17
  • 474 - Language Modeling Language Model Implementation Sampling Text.mp4
    18:17
  • 475 - Topic Modelling with Word and Document Representations One Hot Vectors.mp4
    04:10
  • 476 - Topic Modelling with Word and Document Representations One Hot Vectors Implementaton.mp4
    05:42
  • 477 - Topic Modelling with Word and Document Representations One Hot Vectors Limitations.mp4
    04:45
  • 478 - Topic Modelling with Word and Document Representations One Hot Vectors Uses As Target Labeling.mp4
    03:42
  • 479 - Topic Modelling with Word and Document Representations Term Frequency For Document Representations.mp4
    03:12
  • 480 - Topic Modelling with Word and Document Representations Term Frequency For Document Representations Implementations.mp4
    05:31
  • 481 - Topic Modelling with Word and Document Representations Term Frequency For Word Representations.mp4
    05:17
  • 482 - Topic Modelling with Word and Document Representations TFIDF For Document Representations.mp4
    05:01
  • 483 - Topic Modelling with Word and Document Representations TFIDF For Document Representations Implementation Reading Corpus.mp4
    04:24
  • 485 - Topic Modelling with Word and Document Representations TFIDF For Document Representations Implementation Computing TFIDF.mp4
    07:22
  • 486 - Topic Modelling with Word and Document Representations Topic Modeling With TFIDF 1.mp4
    04:20
  • 487 - Topic Modelling with Word and Document Representations Topic Modeling With TFIDF 3.mp4
    04:27
  • 488 - Topic Modelling with Word and Document Representations Topic Modeling With TFIDF 4.mp4
    04:52
  • 489 - Topic Modelling with Word and Document Representations Topic Modeling With TFIDF 5.mp4
    04:40
  • 490 - Topic Modelling with Word and Document Representations Topic Modeling With Gensim.mp4
    13:26
  • 491 - Word Embeddings LSI Word Cooccurrence Matrix.mp4
    06:25
  • 492 - Word Embeddings LSI Word Cooccurrence Matrix vs Documentterm Matrix.mp4
    05:47
  • 493 - Word Embeddings LSI Word Cooccurrence Matrix Implementation Preparing Data.mp4
    05:08
  • 494 - Word Embeddings LSI Word Cooccurrence Matrix Implementation Preparing Data 2.mp4
    04:13
  • 495 - Word Embeddings LSI Word Cooccurrence Matrix Implementation Preparing Data Getting Vocabulary.mp4
    04:26
  • 496 - Word Embeddings LSI Word Cooccurrence Matrix Implementation Final Function.mp4
    11:37
  • 497 - Word Embeddings LSI Word Cooccurrence Matrix Implementation Handling Memory Issues On Large Corp.mp4
    09:19
  • 498 - Word Embeddings LSI Word Cooccurrence Matrix Sparsity.mp4
    05:19
  • 499 - Word Embeddings LSI Word Cooccurrence Matrix Positive Point Wise Mutual Information PPMI.mp4
    07:58
  • 500 - Word Embeddings LSI PCA For Dense Embeddings.mp4
    05:31
  • 501 - Word Embeddings LSI Latent Semantic Analysis.mp4
    04:25
  • 502 - Word Embeddings LSI Latent Semantic Analysis Implementation.mp4
    06:50
  • 503 - Word Semantics Cosine Similarity.mp4
    07:05
  • 504 - Word Semantics Cosine Similarity Geting Norms Of Vectors.mp4
    09:18
  • 505 - Word Semantics Cosine Similarity Normalizing Vectors.mp4
    06:36
  • 506 - Word Semantics Cosine Similarity With More Than One Vectors.mp4
    11:00
  • 507 - Word Semantics Cosine Similarity Getting Most Similar Words In The Vocabulary.mp4
    10:05
  • 508 - Word Semantics Cosine Similarity Getting Most Similar Words In The Vocabulary Fixingbug Of D.mp4
    06:23
  • 509 - Word Semantics Cosine Similarity Word2Vec Embeddings.mp4
    08:21
  • 510 - Word Semantics Words Analogies.mp4
    04:50
  • 511 - Word Semantics Words Analogies Implemenation 1.mp4
    05:55
  • 512 - Word Semantics Words Analogies Implemenation 2.mp4
    06:13
  • 513 - Word Semantics Words Visualizations.mp4
    02:37
  • 514 - Word Semantics Words Visualizations Implementaion.mp4
    04:28
  • 515 - Word Semantics Words Visualizations Implementaion 2.mp4
    06:36
  • 516 - Word2vec Static And Dynamic Embeddings.mp4
    06:17
  • 517 - Word2vec Self Supervision.mp4
    04:23
  • 518 - Word2vec Word2Vec Algorithm Abstract.mp4
    05:21
  • 519 - Word2vec Word2Vec Why Negative Sampling.mp4
    03:49
  • 520 - Word2vec Word2Vec What Is Skip Gram.mp4
    04:43
  • 521 - Word2vec Word2Vec How To Define Probability Law.mp4
    04:00
  • 522 - Word2vec Word2Vec Sigmoid.mp4
    05:21
  • 523 - Word2vec Word2Vec Formalizing Loss Function.mp4
    05:49
  • 524 - Word2vec Word2Vec Loss Function.mp4
    03:25
  • 525 - Word2vec Word2Vec Gradient Descent Step.mp4
    04:21
  • 526 - Word2vec Word2Vec Implemenation Preparing Data.mp4
    10:37
  • 527 - Word2vec Word2Vec Implemenation Gradient Step.mp4
    07:18
  • 528 - Word2vec Word2Vec Implemenation Driver Function.mp4
    13:38
  • 529 - Need of Deep Learning for NLP Why RNNs For NLP.mp4
    13:25
  • 530 - Need of Deep Learning for NLP Pytorch Installation And Tensors Introduction.mp4
    10:32
  • 531 - Need of Deep Learning for NLP Automatic Diffrenciation Pytorch.mp4
    08:26
  • 532 - IntroductionNLP with Deep Learning DNN Why DNNs In Machine Learning.mp4
    04:13
  • 533 - IntroductionNLP with Deep Learning DNN Representational Power And Data Utilization Capacity Of DNN.mp4
    07:13
  • 534 - IntroductionNLP with Deep Learning DNN Perceptron.mp4
    05:08
  • 535 - IntroductionNLP with Deep Learning DNN Perceptron Implementation.mp4
    07:26
  • 536 - IntroductionNLP with Deep Learning DNN DNN Architecture.mp4
    03:52
  • 537 - IntroductionNLP with Deep Learning DNN DNN Forwardstep Implementation.mp4
    08:21
  • 538 - IntroductionNLP with Deep Learning DNN DNN Why Activation Function Is Require.mp4
    04:47
  • 539 - IntroductionNLP with Deep Learning DNN DNN Properties Of Activation Function.mp4
    06:04
  • 540 - IntroductionNLP with Deep Learning DNN DNN Activation Functions In Pytorch.mp4
    03:49
  • 541 - IntroductionNLP with Deep Learning DNN DNN What Is Loss Function.mp4
    07:10
  • 542 - IntroductionNLP with Deep Learning DNN DNN Loss Function In Pytorch.mp4
    05:45
  • 543 - TrainingNLP with DNN DNN Gradient Descent.mp4
    05:58
  • 544 - TrainingNLP with DNN DNN Gradient Descent Implementation.mp4
    06:51
  • 545 - TrainingNLP with DNN DNN Gradient Descent Stochastic Batch Minibatch.mp4
    07:07
  • 546 - TrainingNLP with DNN DNN Gradient Descent Summary.mp4
    02:38
  • 547 - TrainingNLP with DNN DNN Implemenation Gradient Step.mp4
    04:02
  • 548 - TrainingNLP with DNN DNN Implemenation Stochastic Gradient Descent.mp4
    13:53
  • 549 - TrainingNLP with DNN DNN Implemenation Batch Gradient Descent.mp4
    06:46
  • 550 - TrainingNLP with DNN DNN Implemenation Minibatch Gradient Descent.mp4
    09:04
  • 551 - TrainingNLP with DNN DNN Implemenation In Pytorch.mp4
    15:19
  • 552 - Hyper parametersNLP with DNN DNN Weights Initializations.mp4
    04:35
  • 553 - Hyper parametersNLP with DNN DNN Learning Rate.mp4
    04:03
  • 554 - Hyper parametersNLP with DNN DNN Batch Normalization.mp4
    02:05
  • 555 - Hyper parametersNLP with DNN DNN Batch Normalization Implementation.mp4
    02:41
  • 556 - Hyper parametersNLP with DNN DNN Optimizations.mp4
    04:08
  • 557 - Hyper parametersNLP with DNN DNN Dropout.mp4
    03:58
  • 558 - Hyper parametersNLP with DNN DNN Dropout In Pytorch.mp4
    02:03
  • 559 - Hyper parametersNLP with DNN DNN Early Stopping.mp4
    03:34
  • 560 - Hyper parametersNLP with DNN DNN Hyperparameters.mp4
    03:33
  • 561 - Hyper parametersNLP with DNN DNN Pytorch CIFAR10 Example.mp4
    15:56
  • 562 - IntroductionNLP with Deep Learning RNN What Is RNN.mp4
    04:54
  • 563 - IntroductionNLP with Deep Learning RNN Understanding RNN With A Simple Example.mp4
    08:30
  • 564 - IntroductionNLP with Deep Learning RNN RNN Applications Human Activity Recognition.mp4
    02:53
  • 565 - IntroductionNLP with Deep Learning RNN RNN Applications Image Captioning.mp4
    02:37
  • 566 - IntroductionNLP with Deep Learning RNN RNN Applications Machine Translation.mp4
    15:56
  • 567 - IntroductionNLP with Deep Learning RNN RNN Applications Speech Recognition Stock Price Prediction.mp4
    04:05
  • 568 - IntroductionNLP with Deep Learning RNN RNN Models.mp4
    07:07
  • 569 - Miniproject Language Modelling Language Modeling Next Word Prediction.mp4
    03:43
  • 570 - Miniproject Language Modelling Language Modeling Next Word Prediction Vocabulary Index.mp4
    04:04
  • 571 - Miniproject Language Modelling Language Modeling Next Word Prediction Vocabulary Index Embeddings.mp4
    03:16
  • 572 - Miniproject Language Modelling Language Modeling Next Word Prediction Rnn Architecture.mp4
    04:09
  • 573 - Miniproject Language Modelling Language Modeling Next Word Prediction Python 1.mp4
    07:12
  • 574 - Miniproject Language Modelling Language Modeling Next Word Prediction Python 2.mp4
    09:02
  • 575 - Miniproject Language Modelling Language Modeling Next Word Prediction Python 3.mp4
    07:27
  • 576 - Miniproject Language Modelling Language Modeling Next Word Prediction Python 4.mp4
    09:02
  • 577 - Miniproject Language Modelling Language Modeling Next Word Prediction Python 5.mp4
    04:35
  • 578 - Miniproject Language Modelling Language Modeling Next Word Prediction Python 6.mp4
    13:34
  • 579 - Miniproject Sentiment Classification Vocabulary Implementation.mp4
    09:46
  • 580 - Miniproject Sentiment Classification Vocabulary Implementation Helpers.mp4
    05:50
  • 581 - Miniproject Sentiment Classification Vocabulary Implementation From File.mp4
    06:26
  • 582 - Miniproject Sentiment Classification Vectorizer.mp4
    05:17
  • 583 - Miniproject Sentiment Classification RNN Setup.mp4
    07:20
  • 584 - Miniproject Sentiment Classification RNN Setup 1.mp4
    21:23
  • 585 - RNN in PyTorch RNN In Pytorch Introduction.mp4
    02:04
  • 586 - RNN in PyTorch RNN In Pytorch Embedding Layer.mp4
    07:21
  • 587 - RNN in PyTorch RNN In Pytorch Nn Rnn.mp4
    08:47
  • 588 - RNN in PyTorch RNN In Pytorch Output Shapes.mp4
    04:11
  • 589 - RNN in PyTorch RNN In Pytorch Gatedunits.mp4
    03:39
  • 590 - RNN in PyTorch RNN In Pytorch Gatedunits GRU LSTM.mp4
    03:55
  • 591 - RNN in PyTorch RNN In Pytorch Bidirectional RNN.mp4
    02:44
  • 592 - RNN in PyTorch RNN In Pytorch Bidirectional RNN Output Shapes.mp4
    04:26
  • 593 - RNN in PyTorch RNN In Pytorch Bidirectional RNN Output Shapes Seperation.mp4
    04:33
  • 594 - RNN in PyTorch RNN In Pytorch Example.mp4
    09:48
  • 595 - Advanced RNN models RNN Encoder Decoder.mp4
    03:01
  • 596 - Advanced RNN models RNN Attention.mp4
    03:28
  • 597 - Neural Machine Translation Introduction To Dataset And Packages.mp4
    05:10
  • 598 - Neural Machine Translation Implementing Language Class.mp4
    05:22
  • 599 - Neural Machine Translation Testing Language Class And Implementing Normalization.mp4
    09:44
  • 600 - Neural Machine Translation Reading Datafile.mp4
    05:17
  • 601 - Neural Machine Translation Reading Building Vocabulary.mp4
    07:56
  • 602 - Neural Machine Translation EncoderRNN.mp4
    06:14
  • 603 - Neural Machine Translation DecoderRNN.mp4
    06:13
  • 604 - Neural Machine Translation DecoderRNN Forward Step.mp4
    12:08
  • 605 - Neural Machine Translation DecoderRNN Helper Functions.mp4
    04:54
  • 606 - Neural Machine Translation Training Module.mp4
    13:31
  • 607 - Neural Machine Translation Stochastic Gradient Descent.mp4
    07:12
  • 608 - Neural Machine Translation NMT Training.mp4
    05:06
  • 609 - Neural Machine Translation NMT Evaluation.mp4
    11:13
  • 610 - Links for the Courses Materials and Codes.html
  • 611 - Introduction Course and Instructor Introduction.mp4
    02:16
  • 612 - Introduction AI Sciences Introduction.mp4
    01:28
  • 613 - Introduction Course Description.mp4
    03:19
  • 614 - Fundamentals of Chatbots for Deep Learning Module Introduction.mp4
    04:10
  • 615 - Fundamentals of Chatbots for Deep Learning Conventional vs AI Chatbots.mp4
    05:48
  • 616 - Fundamentals of Chatbots for Deep Learning Geneative vs Retrievel Chatbots.mp4
    04:07
  • 617 - Fundamentals of Chatbots for Deep Learning Benifits of Deep Learning Chatbots.mp4
    04:30
  • 618 - Fundamentals of Chatbots for Deep Learning Chatbots in Medical Domain.mp4
    04:35
  • 619 - Fundamentals of Chatbots for Deep Learning Chatbots in Business.mp4
    04:37
  • 620 - Fundamentals of Chatbots for Deep Learning Chatbots in ECommerce.mp4
    02:51
  • 621 - Deep Learning Based Chatbot Architecture and Develpment Module Introduction.mp4
    02:55
  • 622 - Deep Learning Based Chatbot Architecture and Develpment Deep Learning Architect.mp4
    02:18
  • 623 - Deep Learning Based Chatbot Architecture and Develpment Encoder Decoder.mp4
    01:44
  • 624 - Deep Learning Based Chatbot Architecture and Develpment Steps Involved.mp4
    01:56
  • 625 - Deep Learning Based Chatbot Architecture and Develpment Project Overview and Packages.mp4
    03:50
  • 626 - Deep Learning Based Chatbot Architecture and Develpment Importing Libraries.mp4
    05:20
  • 627 - Deep Learning Based Chatbot Architecture and Develpment Data Prepration.mp4
    06:43
  • 628 - Deep Learning Based Chatbot Architecture and Develpment Develop Vocabulary.mp4
    05:08
  • 629 - Deep Learning Based Chatbot Architecture and Develpment Max Story and Question Length.mp4
    03:46
  • 630 - Deep Learning Based Chatbot Architecture and Develpment Tokenizer.mp4
    02:58
  • 631 - Deep Learning Based Chatbot Architecture and Develpment Separation and Sequence.mp4
    05:06
  • 632 - Deep Learning Based Chatbot Architecture and Develpment Vectorize Stories.mp4
    09:36
  • 633 - Deep Learning Based Chatbot Architecture and Develpment Vectorizing Train and Test Data.mp4
    05:43
  • 634 - Deep Learning Based Chatbot Architecture and Develpment Encoding.mp4
    06:49
  • 635 - Deep Learning Based Chatbot Architecture and Develpment Answer and Response.mp4
    05:39
  • 636 - Deep Learning Based Chatbot Architecture and Develpment Model Completion.mp4
    05:02
  • 637 - Deep Learning Based Chatbot Architecture and Develpment Predictions.mp4
    04:27
  • 638 - Links for the Courses Materials and Codes.html
  • 639 - Introduction Course Outline.mp4
    02:22
  • 640 - Deep Learning Foundation for Recommender Systems Module Introduction.mp4
    02:36
  • 641 - Deep Learning Foundation for Recommender Systems Overview.mp4
    03:32
  • 642 - Deep Learning Foundation for Recommender Systems Deep Learning in Recommendation Systems.mp4
    03:49
  • 643 - Deep Learning Foundation for Recommender Systems Inference After Training.mp4
    03:03
  • 644 - Deep Learning Foundation for Recommender Systems Inference Mechanism.mp4
    03:09
  • 645 - Deep Learning Foundation for Recommender Systems Embeddings and User Context.mp4
    05:25
  • 646 - Deep Learning Foundation for Recommender Systems Neutral Collaborative Filterin.mp4
    03:17
  • 647 - Deep Learning Foundation for Recommender Systems VAE Collaborative Filtering.mp4
    03:09
  • 648 - Deep Learning Foundation for Recommender Systems Strengths and Weaknesses of DL Models.mp4
    03:49
  • 649 - Deep Learning Foundation for Recommender Systems Deep Learning Quiz.mp4
    00:30
  • 650 - Deep Learning Foundation for Recommender Systems Deep Learning Quiz Solution.mp4
    01:52
  • 651 - Project Amazon Product Recommendation System Module Overview.mp4
    01:56
  • 652 - Project Amazon Product Recommendation System TensorFlow Recommenders.mp4
    01:11
  • 653 - Project Amazon Product Recommendation System Two Tower Model.mp4
    02:26
  • 654 - Project Amazon Product Recommendation System Project Overview.mp4
    01:41
  • 655 - Project Amazon Product Recommendation System Download Libraries.mp4
    04:08
  • 656 - Project Amazon Product Recommendation System Data Visualization with WordCloud.mp4
    08:35
  • 657 - Project Amazon Product Recommendation System Make Tensors from DataFrame.mp4
    06:07
  • 658 - Project Amazon Product Recommendation System Rating Our Data.mp4
    06:06
  • 659 - Project Amazon Product Recommendation System Random TrainTest Split.mp4
    05:04
  • 660 - Project Amazon Product Recommendation System Making the Model and Query Tower.mp4
    08:14
  • 661 - Project Amazon Product Recommendation System Candidate Tower and Retrieval System.mp4
    05:57
  • 662 - Project Amazon Product Recommendation System Compute Loss.mp4
    03:04
  • 663 - Project Amazon Product Recommendation System Train and Validation.mp4
    10:58
  • 664 - Project Amazon Product Recommendation System Accuracy vs Recommendations.mp4
    08:01
  • 665 - Project Amazon Product Recommendation System Making Recommendations.mp4
    07:11
  • Description


    Unlock the Secrets of Deep Learning: Dive Deep into CNNs, RNNs, NLP, Chatbots, and Recommender Systems - Deep Learning

    What You'll Learn?


    • Hands-on Projects: Engage in practical projects spanning image analysis, language translation, chatbot creation, and recommendation systems.
    • Deep Learning Fundamentals: Understand the core principles of deep learning and its applications across various domains.
    • Convolutional Neural Networks (CNNs): Master image processing, object detection, and advanced CNN architectures like LeNet, AlexNet, and ResNet.
    • Recurrent Neural Networks (RNNs) and Sequence Modeling: Explore sequence processing, language understanding, and modern RNN variants such as LSTM.
    • Natural Language Processing (NLP) Essentials: Dive into text preprocessing, word embeddings, and deep learning applications in language understanding.
    • Integration and Application: Combine knowledge from different modules to develop comprehensive deep learning solutions through a capstone project.

    Who is this for?


  • Aspiring Data Scientists: Individuals aiming to specialize in deep learning and expand their knowledge in AI applications.
  • Programmers and Developers: Those seeking to venture into the field of artificial intelligence and harness Python for deep learning projects.
  • AI Enthusiasts and Learners: Anyone passionate about understanding CNNs, RNNs, NLP, chatbots, and recommender systems within the realm of deep learning.
  • Students and Researchers: Those pursuing academic endeavors or conducting research in machine learning and AI-related fields.
  • Professionals Exploring Career Shifts: Individuals interested in transitioning or advancing their careers in artificial intelligence and deep learning.
  • Tech Enthusiasts: Individuals keen on exploring cutting-edge technologies and applications within the AI domain.
  • What You Need to Know?


  • Understanding Python fundamentals is recommended for implementing deep learning concepts covered in the course.
  • More details


    Description

    Welcome to the ultimate Deep Learning masterclass! This comprehensive course integrates six modules, each providing a deep dive into different aspects of Deep Learning using Python. Whether you're a beginner looking to build a strong foundation or an intermediate learner seeking to advance your skills, this course offers practical insights, theoretical knowledge, and hands-on projects to cater to your needs.   


    Who Should Take This Course?

    • Beginners interested in diving into the world of Deep Learning with Python

    • Intermediate learners looking to enhance their Deep Learning skills

    • Anyone aspiring to understand and apply Deep Learning concepts in real-world projects


    Why This Course?

    This course offers an all-encompassing resource that covers a wide range of Deep Learning topics, making it suitable for learners at different levels. From fundamentals to advanced concepts, you will gain a comprehensive understanding of Deep Learning using Python through practical applications. 


    What You Will Learn:

    Module 1: Deep Learning Fundamentals with Python

    • Introduction to Deep Learning

    • Python basics for Deep Learning

    • Data preprocessing for Deep Learning algorithms

    • General machine learning concepts

    Module 2: Convolutional Neural Networks (CNNs) in Depth

    • In-depth understanding of CNNs

    • Classical computer vision techniques

    • Basics of Deep Neural Networks

    • Architectures like LeNet, AlexNet, InceptionNet, ResNet

    • Transfer Learning and YOLO Case Study

    Module 3: Recurrent Neural Networks (RNNs) and Sequence Modeling

    • Exploration of RNNs

    • Applications and importance of RNNs

    • Addressing vanishing gradients in RNNs

    • Modern RNNs: LSTM, Bi-Directional RNNs, Attention Models

    • Implementation of RNNs using TensorFlow

    Module 4: Natural Language Processing (NLP) Fundamentals

    • Mastery of NLP

    • NLP foundations and significance

    • Text preprocessing techniques

    • Word embeddings: Word2Vec, GloVe, BERT

    • Deep Learning in NLP: Neural Networks, RNNs, and Advanced Models

    Module 5: Developing Chatbots using Deep Learning

    • Building Chatbot systems

    • Deep Learning fundamentals for Chatbots

    • Comparison of conventional vs. Deep Learning-based Chatbots

    • Practical implementation of RNN-based Chatbots

    • Comprehensive package: Projects and advanced models

    Module 6: Recommender Systems using Deep Learning

    • Application of Recommender Systems

    • Deep Learning's role in Recommender Systems

    • Benefits and challenges

    • Developing Recommender Systems with TensorFlow

    • Real-world project: Amazon Product Recommendation System

    Final Capstone Project

    • Integration and application

    • Hands-on project: Developing a comprehensive Deep Learning solution

    • Final assessment and evaluation


    This comprehensive course merges the essentials of Deep Learning, covering CNNs, RNNs, NLP, Chatbots, and Recommender Systems, offering a thorough understanding of Python-based implementations. Enroll now to gain expertise in various domains of Deep Learning through hands-on projects and theoretical foundations.   


    Keywords and Skills:

    • Deep Learning Mastery

    • Python Deep Learning Course

    • CNNs and RNNs Training

    • NLP Fundamentals Tutorial

    • Chatbot Development Workshop

    • Recommender Systems with TensorFlow

    • AI Course for Beginners

    • Hands-on Deep Learning Projects

    • Python Programming for AI

    • Comprehensive Deep Learning Curriculum

    Who this course is for:

    • Aspiring Data Scientists: Individuals aiming to specialize in deep learning and expand their knowledge in AI applications.
    • Programmers and Developers: Those seeking to venture into the field of artificial intelligence and harness Python for deep learning projects.
    • AI Enthusiasts and Learners: Anyone passionate about understanding CNNs, RNNs, NLP, chatbots, and recommender systems within the realm of deep learning.
    • Students and Researchers: Those pursuing academic endeavors or conducting research in machine learning and AI-related fields.
    • Professionals Exploring Career Shifts: Individuals interested in transitioning or advancing their careers in artificial intelligence and deep learning.
    • Tech Enthusiasts: Individuals keen on exploring cutting-edge technologies and applications within the AI domain.

    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    We are a group of experts, PhDs and Practitioners of Artificial Intelligence, Computer Science, Machine Learning, and Statistics. Some of us work in big companies like Amazon, Google, Facebook, Microsoft, KPMG, BCG, and IBM.We decided to produce a series of courses mainly dedicated to beginners and newcomers on the techniques and methods of Machine Learning, Statistics, Artificial Intelligence, and Data Science. Initially, our objective was to help only those who wish to understand these techniques more easily and to be able to start without too much theory and without a long reading. Today we also publish a more complete course on some topics for a wider audience.Our courses have had phenomenal success. Our Courses have helped more than 100,000 students to master AI and Data Science.
    AI Sciences Team
    AI Sciences Team
    Instructor's Courses
    We are a group of experts, PhDs and Practitioners of Artificial Intelligence, Computer Science, Machine Learning, and Statistics. Some of us work in big companies like Amazon, Google, Facebook, Microsoft, KPMG, BCG, and IBM.We decided to produce a series of courses mainly dedicated to beginners and newcomers on the techniques and methods of Machine Learning, Statistics, Artificial Intelligence, and Data Science. Initially, our objective was to help only those who wish to understand these techniques more easily and to be able to start without too much theory and without a long reading. Today we also publish a more complete course on some topics for a wider audience.Our courses have had phenomenal success. Our Courses have helped more than 100,000 students to master AI and Data Science.
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 657
    • duration 64:18:59
    • Release Date 2024/01/04