Companies Home Search Profile

Deep Learning Patterns and Practices, Video Edition

Focused View

13:53:11

58 View
  • 1 - Part 1. Deep learning fundamentals.mp4
    01:02
  • 2 - Chapter 1 Designing modern machine learning.mp4
    12:43
  • 3 - Chapter 1 The evolution in machine learning approaches.mp4
    07:41
  • 4 - Chapter 1 Next steps in computer learning - Part 1.mp4
    09:57
  • 5 - Chapter 1 Next steps in computer learning - Part 2.mp4
    08:21
  • 6 - Chapter 1 The benefits of design patterns.mp4
    06:48
  • 7 - Chapter 2 Deep neural networks.mp4
    11:11
  • 8 - Chapter 2 Sequential API method.mp4
    08:22
  • 9 - Chapter 2 Activation functions.mp4
    12:15
  • 10 - Chapter 2 DNN binary classifier.mp4
    12:39
  • 11 - Chapter 2 Simple image classifier.mp4
    11:07
  • 12 - Chapter 3 Convolutional and residual neural networks.mp4
    08:21
  • 13 - Chapter 3 Feature detection.mp4
    07:38
  • 14 - Chapter 3 The ConvNet design for a CNN.mp4
    09:34
  • 15 - Chapter 3 VGG networks.mp4
    06:45
  • 16 - Chapter 3 Architecture.mp4
    09:41
  • 17 - Chapter 3 Batch normalization.mp4
    06:23
  • 18 - Chapter 4 Training fundamentals.mp4
    08:28
  • 19 - Chapter 4 Dataset splitting.mp4
    08:07
  • 20 - Chapter 4 Data normalization.mp4
    06:09
  • 21 - Chapter 4 Validation and overfitting.mp4
    08:15
  • 22 - Chapter 4 Convergence.mp4
    10:16
  • 23 - Chapter 4 Hyperparameters.mp4
    09:07
  • 24 - Chapter 4 Learning rate.mp4
    06:27
  • 25 - Chapter 4 Invariance.mp4
    10:01
  • 26 - Chapter 4 Scale invariance.mp4
    05:51
  • 27 - Chapter 4 Raw (disk) datasets.mp4
    08:00
  • 28 - Chapter 4 Resizing.mp4
    06:42
  • 29 - Part 2. Basic design pattern.mp4
    02:04
  • 30 - Chapter 5 Procedural design pattern.mp4
    08:10
  • 31 - Chapter 5 Stem component.mp4
    10:02
  • 32 - Chapter 5 ResNet.mp4
    08:02
  • 33 - Chapter 5 Pre-stem.mp4
    11:31
  • 34 - Chapter 5 Task component.mp4
    11:10
  • 35 - Chapter 5 Beyond computer vision - NLP.mp4
    08:39
  • 36 - Chapter 6 Wide convolutional neural networks.mp4
    10:39
  • 37 - Chapter 6 Inception v1 module.mp4
    11:43
  • 38 - Chapter 6 Inception v2 - Factoring convolutions.mp4
    10:37
  • 39 - Chapter 6 Normal convolution.mp4
    07:41
  • 40 - Chapter 6 ResNeXt - Wide residual neural networks.mp4
    12:06
  • 41 - Chapter 6 Beyond computer vision - Structured data.mp4
    08:05
  • 42 - Chapter 7 Alternative connectivity patterns.mp4
    11:44
  • 43 - Chapter 7 Dense block.mp4
    06:55
  • 44 - Chapter 7 Xception - Extreme Inception.mp4
    10:09
  • 45 - Chapter 7 Exit flow of Xception.mp4
    07:23
  • 46 - Chapter 7 SE-Net - Squeeze and excitation.mp4
    07:07
  • 47 - Chapter 8 Mobile convolutional neural networks.mp4
    11:39
  • 48 - Chapter 8 Stem.mp4
    10:01
  • 49 - Chapter 8 MobileNet v2.mp4
    12:05
  • 50 - Chapter 8 SqueezeNet.mp4
    10:42
  • 51 - Chapter 8 Classifier.mp4
    09:05
  • 52 - Chapter 8 ShuffleNet v1.mp4
    08:57
  • 53 - Chapter 8 Learner.mp4
    06:16
  • 54 - Chapter 8 Deployment.mp4
    08:22
  • 55 - Chapter 9 Autoencoders.mp4
    11:23
  • 56 - Chapter 9 Convolutional autoencoders.mp4
    09:16
  • 57 - Chapter 9 Super-resolution.mp4
    12:18
  • 58 - Chapter 9 Pretext tasks.mp4
    09:04
  • 59 - Part 3. Working with pipelines.mp4
    02:18
  • 60 - Chapter 10 Hyperparameter tuning.mp4
    07:58
  • 61 - Chapter 10 Lottery hypothesis.mp4
    07:20
  • 62 - Chapter 10 Hyperparameter search fundamentals.mp4
    09:06
  • 63 - Chapter 10 Random search.mp4
    09:25
  • 64 - Chapter 10 Learning rate scheduler.mp4
    12:18
  • 65 - Chapter 10 Regularization.mp4
    09:28
  • 66 - Chapter 11 Transfer learning.mp4
    11:45
  • 67 - Chapter 11 New classifier.mp4
    10:21
  • 68 - Chapter 11 TF Hub prebuilt models.mp4
    11:17
  • 69 - Chapter 11 Distinct tasks.mp4
    12:23
  • 70 - Chapter 12 Data distributions.mp4
    11:21
  • 71 - Chapter 12 Out of distribution.mp4
    11:48
  • 72 - Chapter 12 Training as a CNN.mp4
    12:06
  • 73 - Chapter 13 Data pipeline.mp4
    05:28
  • 74 - Chapter 13 Compressed and raw-image formats.mp4
    09:14
  • 75 - Chapter 13 HDF5 format.mp4
    10:56
  • 76 - Chapter 13 TFRecord format.mp4
    11:33
  • 77 - Chapter 13 Data feeding.mp4
    09:45
  • 78 - Chapter 13 Data preprocessing.mp4
    12:28
  • 79 - Chapter 13 Preprocessing with TF Extended.mp4
    07:31
  • 80 - Chapter 13 Data augmentation.mp4
    11:25
  • 81 - Chapter 14 Training and deployment pipeline.mp4
    12:21
  • 82 - Chapter 14 Model feeding with tf.data.Dataset.mp4
    11:33
  • 83 - Chapter 14 Model feeding with TFX.mp4
    11:43
  • 84 - Chapter 14 Training schedulers.mp4
    12:53
  • 85 - Chapter 14 Model evaluations.mp4
    09:24
  • 86 - Chapter 14 TFX evaluation.mp4
    06:15
  • 87 - Chapter 14 Serving predictions.mp4
    11:45
  • 88 - Chapter 14 TFX pipeline components for deployment.mp4
    12:11
  • 89 - Chapter 14 Evolution in production pipeline design.mp4
    07:06
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    O'Reilly Media is an American learning company established by Tim O'Reilly that publishes books, produces tech conferences, and provides an online learning platform. Its distinctive brand features a woodcut of an animal on many of its book covers.
    • language english
    • Training sessions 89
    • duration 13:53:11
    • Release Date 2023/11/06