Deep Learning Patterns and Practices, Video Edition
Focused View
13:53:11
58 View
1 - Part 1. Deep learning fundamentals.mp4
01:02
2 - Chapter 1 Designing modern machine learning.mp4
12:43
3 - Chapter 1 The evolution in machine learning approaches.mp4
07:41
4 - Chapter 1 Next steps in computer learning - Part 1.mp4
09:57
5 - Chapter 1 Next steps in computer learning - Part 2.mp4
08:21
6 - Chapter 1 The benefits of design patterns.mp4
06:48
7 - Chapter 2 Deep neural networks.mp4
11:11
8 - Chapter 2 Sequential API method.mp4
08:22
9 - Chapter 2 Activation functions.mp4
12:15
10 - Chapter 2 DNN binary classifier.mp4
12:39
11 - Chapter 2 Simple image classifier.mp4
11:07
12 - Chapter 3 Convolutional and residual neural networks.mp4
08:21
13 - Chapter 3 Feature detection.mp4
07:38
14 - Chapter 3 The ConvNet design for a CNN.mp4
09:34
15 - Chapter 3 VGG networks.mp4
06:45
16 - Chapter 3 Architecture.mp4
09:41
17 - Chapter 3 Batch normalization.mp4
06:23
18 - Chapter 4 Training fundamentals.mp4
08:28
19 - Chapter 4 Dataset splitting.mp4
08:07
20 - Chapter 4 Data normalization.mp4
06:09
21 - Chapter 4 Validation and overfitting.mp4
08:15
22 - Chapter 4 Convergence.mp4
10:16
23 - Chapter 4 Hyperparameters.mp4
09:07
24 - Chapter 4 Learning rate.mp4
06:27
25 - Chapter 4 Invariance.mp4
10:01
26 - Chapter 4 Scale invariance.mp4
05:51
27 - Chapter 4 Raw (disk) datasets.mp4
08:00
28 - Chapter 4 Resizing.mp4
06:42
29 - Part 2. Basic design pattern.mp4
02:04
30 - Chapter 5 Procedural design pattern.mp4
08:10
31 - Chapter 5 Stem component.mp4
10:02
32 - Chapter 5 ResNet.mp4
08:02
33 - Chapter 5 Pre-stem.mp4
11:31
34 - Chapter 5 Task component.mp4
11:10
35 - Chapter 5 Beyond computer vision - NLP.mp4
08:39
36 - Chapter 6 Wide convolutional neural networks.mp4
10:39
37 - Chapter 6 Inception v1 module.mp4
11:43
38 - Chapter 6 Inception v2 - Factoring convolutions.mp4
10:37
39 - Chapter 6 Normal convolution.mp4
07:41
40 - Chapter 6 ResNeXt - Wide residual neural networks.mp4
12:06
41 - Chapter 6 Beyond computer vision - Structured data.mp4
08:05
42 - Chapter 7 Alternative connectivity patterns.mp4
11:44
43 - Chapter 7 Dense block.mp4
06:55
44 - Chapter 7 Xception - Extreme Inception.mp4
10:09
45 - Chapter 7 Exit flow of Xception.mp4
07:23
46 - Chapter 7 SE-Net - Squeeze and excitation.mp4
07:07
47 - Chapter 8 Mobile convolutional neural networks.mp4
11:39
48 - Chapter 8 Stem.mp4
10:01
49 - Chapter 8 MobileNet v2.mp4
12:05
50 - Chapter 8 SqueezeNet.mp4
10:42
51 - Chapter 8 Classifier.mp4
09:05
52 - Chapter 8 ShuffleNet v1.mp4
08:57
53 - Chapter 8 Learner.mp4
06:16
54 - Chapter 8 Deployment.mp4
08:22
55 - Chapter 9 Autoencoders.mp4
11:23
56 - Chapter 9 Convolutional autoencoders.mp4
09:16
57 - Chapter 9 Super-resolution.mp4
12:18
58 - Chapter 9 Pretext tasks.mp4
09:04
59 - Part 3. Working with pipelines.mp4
02:18
60 - Chapter 10 Hyperparameter tuning.mp4
07:58
61 - Chapter 10 Lottery hypothesis.mp4
07:20
62 - Chapter 10 Hyperparameter search fundamentals.mp4
09:06
63 - Chapter 10 Random search.mp4
09:25
64 - Chapter 10 Learning rate scheduler.mp4
12:18
65 - Chapter 10 Regularization.mp4
09:28
66 - Chapter 11 Transfer learning.mp4
11:45
67 - Chapter 11 New classifier.mp4
10:21
68 - Chapter 11 TF Hub prebuilt models.mp4
11:17
69 - Chapter 11 Distinct tasks.mp4
12:23
70 - Chapter 12 Data distributions.mp4
11:21
71 - Chapter 12 Out of distribution.mp4
11:48
72 - Chapter 12 Training as a CNN.mp4
12:06
73 - Chapter 13 Data pipeline.mp4
05:28
74 - Chapter 13 Compressed and raw-image formats.mp4
09:14
75 - Chapter 13 HDF5 format.mp4
10:56
76 - Chapter 13 TFRecord format.mp4
11:33
77 - Chapter 13 Data feeding.mp4
09:45
78 - Chapter 13 Data preprocessing.mp4
12:28
79 - Chapter 13 Preprocessing with TF Extended.mp4
07:31
80 - Chapter 13 Data augmentation.mp4
11:25
81 - Chapter 14 Training and deployment pipeline.mp4
12:21
82 - Chapter 14 Model feeding with tf.data.Dataset.mp4
11:33
83 - Chapter 14 Model feeding with TFX.mp4
11:43
84 - Chapter 14 Training schedulers.mp4
12:53
85 - Chapter 14 Model evaluations.mp4
09:24
86 - Chapter 14 TFX evaluation.mp4
06:15
87 - Chapter 14 Serving predictions.mp4
11:45
88 - Chapter 14 TFX pipeline components for deployment.mp4
12:11
89 - Chapter 14 Evolution in production pipeline design.mp4
07:06
More details
User Reviews
Rating
average 0
Focused display
Category

O'Reilly
View courses O'ReillyO'Reilly Media is an American learning company established by Tim O'Reilly that publishes books, produces tech conferences, and provides an online learning platform. Its distinctive brand features a woodcut of an animal on many of its book covers.
- language english
- Training sessions 89
- duration 13:53:11
- Release Date 2023/11/06