Companies Home Search Profile

Deep Learning Patterns And Practices

Focused View

13:53:11

71 View
  • 00001 Part 1. Deep learning fundamentals.mp4
    01:02
  • 00002 Chapter 1 Designing modern machine learning.mp4
    12:43
  • 00003 Chapter 1 The evolution in machine learning approaches.mp4
    07:41
  • 00004 Chapter 1 Next steps in computer learning - Part 1.mp4
    09:57
  • 00005 Chapter 1 Next steps in computer learning - Part 2.mp4
    08:21
  • 00006 Chapter 1 The benefits of design patterns.mp4
    06:48
  • 00007 Chapter 2 Deep neural networks.mp4
    11:11
  • 00008 Chapter 2 Sequential API method.mp4
    08:22
  • 00009 Chapter 2 Activation functions.mp4
    12:15
  • 00010 Chapter 2 DNN binary classifier.mp4
    12:39
  • 00011 Chapter 2 Simple image classifier.mp4
    11:07
  • 00012 Chapter 3 Convolutional and residual neural networks.mp4
    08:21
  • 00013 Chapter 3 Feature detection.mp4
    07:38
  • 00014 Chapter 3 The ConvNet design for a CNN.mp4
    09:34
  • 00015 Chapter 3 VGG networks.mp4
    06:45
  • 00016 Chapter 3 Architecture.mp4
    09:41
  • 00017 Chapter 3 Batch normalization.mp4
    06:23
  • 00018 Chapter 4 Training fundamentals.mp4
    08:28
  • 00019 Chapter 4 Dataset splitting.mp4
    08:07
  • 00020 Chapter 4 Data normalization.mp4
    06:09
  • 00021 Chapter 4 Validation and overfitting.mp4
    08:15
  • 00022 Chapter 4 Convergence.mp4
    10:16
  • 00023 Chapter 4 Hyperparameters.mp4
    09:07
  • 00024 Chapter 4 Learning rate.mp4
    06:27
  • 00025 Chapter 4 Invariance.mp4
    10:01
  • 00026 Chapter 4 Scale invariance.mp4
    05:51
  • 00027 Chapter 4 Raw disk datasets.mp4
    08:00
  • 00028 Chapter 4 Resizing.mp4
    06:42
  • 00029 Part 2. Basic design pattern.mp4
    02:04
  • 00030 Chapter 5 Procedural design pattern.mp4
    08:10
  • 00031 Chapter 5 Stem component.mp4
    10:02
  • 00032 Chapter 5 ResNet.mp4
    08:02
  • 00033 Chapter 5 Pre-stem.mp4
    11:31
  • 00034 Chapter 5 Task component.mp4
    11:10
  • 00035 Chapter 5 Beyond computer vision - NLP.mp4
    08:39
  • 00036 Chapter 6 Wide convolutional neural networks.mp4
    10:39
  • 00037 Chapter 6 Inception v1 module.mp4
    11:43
  • 00038 Chapter 6 Inception v2 - Factoring convolutions.mp4
    10:37
  • 00039 Chapter 6 Normal convolution.mp4
    07:41
  • 00040 Chapter 6 ResNeXt - Wide residual neural networks.mp4
    12:06
  • 00041 Chapter 6 Beyond computer vision - Structured data.mp4
    08:05
  • 00042 Chapter 7 Alternative connectivity patterns.mp4
    11:44
  • 00043 Chapter 7 Dense block.mp4
    06:55
  • 00044 Chapter 7 Xception - Extreme Inception.mp4
    10:09
  • 00045 Chapter 7 Exit flow of Xception.mp4
    07:23
  • 00046 Chapter 7 SE-Net - Squeeze and excitation.mp4
    07:07
  • 00047 Chapter 8 Mobile convolutional neural networks.mp4
    11:39
  • 00048 Chapter 8 Stem.mp4
    10:01
  • 00049 Chapter 8 MobileNet v2.mp4
    12:05
  • 00050 Chapter 8 SqueezeNet.mp4
    10:42
  • 00051 Chapter 8 Classifier.mp4
    09:05
  • 00052 Chapter 8 ShuffleNet v1.mp4
    08:57
  • 00053 Chapter 8 Learner.mp4
    06:16
  • 00054 Chapter 8 Deployment.mp4
    08:22
  • 00055 Chapter 9 Autoencoders.mp4
    11:23
  • 00056 Chapter 9 Convolutional autoencoders.mp4
    09:16
  • 00057 Chapter 9 Super-resolution.mp4
    12:18
  • 00058 Chapter 9 Pretext tasks.mp4
    09:04
  • 00059 Part 3. Working with pipelines.mp4
    02:18
  • 00060 Chapter 10 Hyperparameter tuning.mp4
    07:58
  • 00061 Chapter 10 Lottery hypothesis.mp4
    07:20
  • 00062 Chapter 10 Hyperparameter search fundamentals.mp4
    09:06
  • 00063 Chapter 10 Random search.mp4
    09:25
  • 00064 Chapter 10 Learning rate scheduler.mp4
    12:18
  • 00065 Chapter 10 Regularization.mp4
    09:28
  • 00066 Chapter 11 Transfer learning.mp4
    11:45
  • 00067 Chapter 11 New classifier.mp4
    10:21
  • 00068 Chapter 11 TF Hub prebuilt models.mp4
    11:17
  • 00069 Chapter 11 Distinct tasks.mp4
    12:23
  • 00070 Chapter 12 Data distributions.mp4
    11:21
  • 00071 Chapter 12 Out of distribution.mp4
    11:48
  • 00072 Chapter 12 Training as a CNN.mp4
    12:06
  • 00073 Chapter 13 Data pipeline.mp4
    05:28
  • 00074 Chapter 13 Compressed and raw-image formats.mp4
    09:14
  • 00075 Chapter 13 HDF5 format.mp4
    10:56
  • 00076 Chapter 13 TFRecord format.mp4
    11:33
  • 00077 Chapter 13 Data feeding.mp4
    09:45
  • 00078 Chapter 13 Data preprocessing.mp4
    12:28
  • 00079 Chapter 13 Preprocessing with TF Extended.mp4
    07:31
  • 00080 Chapter 13 Data augmentation.mp4
    11:25
  • 00081 Chapter 14 Training and deployment pipeline.mp4
    12:21
  • 00082 Chapter 14 Model feeding with tf.data.Dataset.mp4
    11:33
  • 00083 Chapter 14 Model feeding with TFX.mp4
    11:43
  • 00084 Chapter 14 Training schedulers.mp4
    12:53
  • 00085 Chapter 14 Model evaluations.mp4
    09:24
  • 00086 Chapter 14 TFX evaluation.mp4
    06:15
  • 00087 Chapter 14 Serving predictions.mp4
    11:45
  • 00088 Chapter 14 TFX pipeline components for deployment.mp4
    12:11
  • 00089 Chapter 14 Evolution in production pipeline design.mp4
    07:06
  • keras-idiomatic-programmer-master.zip
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Manning Publications is an American publisher specializing in content relating to computers. Manning mainly publishes textbooks but also release videos and projects for professionals within the computing world.
    • language english
    • Training sessions 89
    • duration 13:53:11
    • Release Date 2023/11/06