Companies Home Search Profile

Deep Learning- Deep Learning using Python for Beginners

Focused View

6:13:01

12 View
  • 1. Introduction to Course.mp4
    03:36
  • 2. Request for Your Honest Review.mp4
    01:18
  • 3. Links for the Courses Materials and Codes.html
  • 1. Links for the Courses Materials and Codes.html
  • 2. Problem to Solve Part 1.mp4
    02:00
  • 3. Problem to Solve Part 2.mp4
    02:26
  • 4. Problem to Solve Part 3.mp4
    01:42
  • 5. Linear Equation.mp4
    03:18
  • 6. Linear Equation Vectorized.mp4
    03:00
  • 7. 3D Feature Space.mp4
    03:46
  • 8. N Dimensional Space.mp4
    02:30
  • 9. Theory of Perceptron.mp4
    01:46
  • 10. Implementing Basic Perceptron.mp4
    05:37
  • 11. Logical Gates for Perceptrons.mp4
    02:46
  • 12. Perceptron Training Part 1.mp4
    01:39
  • 13. Perceptron Training Part 2.mp4
    03:40
  • 14. Learning Rate.mp4
    03:14
  • 15. Perceptron Training Part 3.mp4
    03:31
  • 16. Perceptron Algorithm.mp4
    01:00
  • 17. Coading Perceptron Algo (Data Reading & Visualization).mp4
    05:51
  • 18. Coading Perceptron Algo (Perceptron Step).mp4
    07:22
  • 19. Coading Perceptron Algo (Training Perceptron).mp4
    06:42
  • 20. Coading Perceptron Algo (Visualizing the Results).mp4
    03:53
  • 21. Problem with Linear Solutions.mp4
    02:32
  • 22. Solution to Problem.mp4
    01:03
  • 23. Error Functions.mp4
    02:21
  • 24. Discrete vs Continuous Error Function.mp4
    02:25
  • 25. Sigmoid Function.mp4
    03:01
  • 26. Multi-Class Problem.mp4
    01:17
  • 27. Problem of Negative Scores.mp4
    03:02
  • 28. Need of Softmax.mp4
    01:22
  • 29. Coding Softmax.mp4
    04:06
  • 30. One Hot Encoding.mp4
    02:40
  • 31. Maximum Likelihood Part 1.mp4
    05:30
  • 32. Maximum Likelihood Part 2.mp4
    03:47
  • 33. Cross Entropy.mp4
    04:06
  • 34. Cross Entropy Formulation.mp4
    07:38
  • 35. Multi Class Cross Entropy.mp4
    03:51
  • 36. Cross Entropy Implementation.mp4
    04:14
  • 37. Sigmoid Function Implementation.mp4
    00:57
  • 38. Output Function Implementation.mp4
    02:10
  • 1. Links for the Courses Materials and Codes.html
  • 2. Introduction to Gradient Decent.mp4
    05:21
  • 3. Convex Functions.mp4
    02:31
  • 4. Use of Derivatives.mp4
    03:12
  • 5. How Gradient Decent Works.mp4
    03:34
  • 6. Gradient Step.mp4
    01:54
  • 7. Logistic Regression Algorithm.mp4
    01:37
  • 8. Data Visualization and Reading.mp4
    06:10
  • 9. Updating Weights in Python.mp4
    04:14
  • 10. Implementing Logistic Regression.mp4
    12:44
  • 11. Visualization and Results.mp4
    08:43
  • 12. Gradient Decent vs Perceptron.mp4
    04:35
  • 13. Linear to Non Linear Boundaries.mp4
    04:42
  • 14. Combining Probabilities.mp4
    02:07
  • 15. Weighted Sums.mp4
    03:02
  • 16. Neural Network Architecture.mp4
    12:09
  • 17. Layers and DEEP Networks.mp4
    04:44
  • 18. Multi Class Classification.mp4
    02:48
  • 19. Basics of Feed Forward.mp4
    07:51
  • 20. Feed Forward for DEEP Net.mp4
    04:57
  • 21. Deep Learning Algo Overview.mp4
    01:57
  • 22. Basics of Back Propagation.mp4
    06:32
  • 23. Updating Weights.mp4
    02:46
  • 24. Chain Rule for BackPropagation.mp4
    05:53
  • 25. Sigma Prime.mp4
    02:23
  • 26. Data Analysis NN Implementation.mp4
    05:25
  • 27. One Hot Encoding (NN Implementation).mp4
    03:11
  • 28. Scaling the Data (NN Implementation).mp4
    01:48
  • 29. Splitting the Data (NN Implementation).mp4
    04:55
  • 30. Helper Functions (NN Implementation).mp4
    02:18
  • 31. Training (NN Implementation).mp4
    12:25
  • 32. Testing (NN Implementation).mp4
    03:21
  • 1. Links for the Courses Materials and Codes.html
  • 2. Underfitting vs Overfitting.mp4
    05:19
  • 3. Early Stopping.mp4
    03:51
  • 4. Quiz.mp4
    00:58
  • 5. Solution & Regularization.mp4
    05:59
  • 6. L1 & L2 Regularization.mp4
    03:12
  • 7. Dropout.mp4
    02:59
  • 8. Local Minima Problem.mp4
    02:55
  • 9. Random Restart Solution.mp4
    04:27
  • 10. Vanishing Gradient Problem.mp4
    04:16
  • 11. Other Activation Functions.mp4
    03:19
  • 1. Links for the Courses Materials and Codes.html
  • 2. Final Project Part 1.mp4
    11:19
  • 3. Final Project Part 2.mp4
    13:16
  • 4. Final Project Part 3.mp4
    12:58
  • 5. Final Project Part 4.mp4
    12:19
  • 6. Final Project Part 5.mp4
    08:06
  • 7. THANK YOU Bonus Video.mp4
    01:20
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 86
    • duration 6:13:01
    • Release Date 2024/05/19