Data Structures, Algorithms, and Machine Learning Optimization
Focused View
6:27:38
8 View
1.1 Orientation to the Machine Learning Foundations Series-1 j225u2zw.mp4
03:06
1.2 A Brief History of Data-1 2b15gjsa.mp4
06:51
1.3 A Brief History of Algorithms-1 t7p43t0a.mp4
05:04
1.4 Applications to Machine Learning-1 0mwik9nq.mp4
03:18
2.1 Introduction-1 3m8jqstj.mp4
08:14
2.2 Constant Time-1 mvmme7tc.mp4
09:26
2.3 Linear Time-1 lbtul2fd.mp4
07:57
2.4 Polynomial Time-1 azvfdac9.mp4
05:26
2.5 Common Runtimes-1 oc6ntre1.mp4
06:47
2.6 Best versus Worst Case-1 3s3zu6v7.mp4
09:23
3.1 Lists-1 xq8t62k3.mp4
03:28
3.2 Arrays-1 ng1ex7u7.mp4
08:55
3.3 Linked Lists-1 9mdvvbl1.mp4
03:03
3.4 Doubly-Linked Lists-1 mg3e611v.mp4
01:24
3.5 Stacks-1 km4ks6ba.mp4
04:16
3.6 Queues-1 fb1syknh.mp4
01:48
3.7 Deques-1 qiae1dix.mp4
05:19
4.1 Binary Search-1 sgp6ncjp.mp4
17:40
4.2 Bubble Sort-1 0rciok4o.mp4
09:20
4.3 Merge Sort-1 bvp4hwmr.mp4
16:14
4.4 Quick Sort-1 alqbo35e.mp4
15:05
5.1 Maps and Dictionaries-1 jlghq9fx.mp4
04:32
5.2 Sets-1 1fu7r32o.mp4
03:57
5.3 Hash Functions-1 69rzqd81.mp4
06:50
5.4 Collisions-1 hueopo2v.mp4
05:13
5.5 Load Factor-1 1o6rzf14.mp4
02:17
5.6 Hash Maps-1 xgfoxj80.mp4
02:50
5.7 String Keys-1 9yrxbkmz.mp4
03:17
5.8 Hashing in ML-1 hd4ofvqr.mp4
02:13
6.1 Introduction-1 vige31cl.mp4
03:37
6.2 Decision Trees-1 a1kf47jd.mp4
15:58
6.3 Random Forests-1 tdzchlbt.mp4
08:05
6.4 XGBoost - Gradient-Boosted Trees-1 nqqqkuut.mp4
09:57
6.5 Additional Concepts-1 pe96vxli.mp4
02:49
7.1 Introduction-1 zrs05h1z.mp4
02:58
7.2 Directed versus Undirected Graphs-1 8owxblcg.mp4
01:43
7.3 DAGs - Directed Acyclic Graphs-1 6e7vwpti.mp4
10:33
7.4 Additional Concepts-1 gs4yyv04.mp4
01:26
7.5 Bonus - Pandas DataFrames-1 0qdxrtbz.mp4
01:50
7.6 Resources for Further Study of DSA-1 yotxi7qk.mp4
01:41
8.1 Statistics versus Machine Learning-1 ryhdp03c.mp4
12:28
8.2 Objective Functions-1 mfqn5miw.mp4
07:56
8.3 Mean Absolute Error-1 o25rl6gv.mp4
02:08
8.4 Mean Squared Error-1 2ijm8zs5.mp4
08:01
8.5 Minimizing Cost with Gradient Descent-1 6csagyw7.mp4
06:59
8.6 Gradient Descent from Scratch with PyTorch-1 b9c5to06.mp4
25:58
8.7 Critical Points-1 dqtjm5pa.mp4
08:46
8.8 Stochastic Gradient Descent-1 4ugi2e0l.mp4
16:44
8.9 Learning Rate Scheduling-1 rbn74jj8.mp4
12:47
8.10 Maximizing Reward with Gradient Ascent-1 sjmahkxl.mp4
02:55
9.1 Jacobian Matrices-1 locjc786.mp4
07:06
9.2 Second-Order Optimization and Hessians-1 p3snmxzz.mp4
05:26
9.3 Momentum-1 2t8nos0w.mp4
02:38
9.4 Adaptive Optimizers-1 iiaajhex.mp4
07:19
9.5 Congratulations and Next Steps-1 2f5dvgbj.mp4
08:26
Data Structures, Algorithms, and Machine Learning Optimization - Introduction-1 obd37x4i.mp4
02:55
Data Structures, Algorithms, and Machine Learning Optimization - Summary-1 c7y8c31a.mp4
00:52
Topics-1 6t08jff9.mp4
00:27
Topics-1 9l2kqjwl.mp4
00:28
Topics-1 14lwnrox.mp4
00:35
Topics-1 h8oxrxkq.mp4
00:30
Topics-1 il0kt54q.mp4
00:22
Topics-1 k8xqbx14.mp4
00:24
Topics-1 lnxw7w1d.mp4
00:36
Topics-1 ojmlg5t3.mp4
00:43
Topics-1 z0h0ef88.mp4
00:19
More details
User Reviews
Rating
average 0
Focused display
Category

LiveLessons
View courses LiveLessonsPearson's video training library is an indispensable learning tool for today's competitive job market. Having essential technology training and certifications can open doors for career advancement and life enrichment. We take learning personally. We've published hundreds of up-to-date videos on wide variety of key topics for Professionals and IT Certification candidates. Now you can learn from renowned industry experts from anywhere in the world, without leaving home.
- language english
- Training sessions 66
- duration 6:27:38
- Release Date 2024/02/15