Companies Home Search Profile

Data Sciense and ML (SQL - Python - Tableau) for integration

Focused View

4:16:20

0 View
  • 1 -Introduction.mp4
    04:43
  • 2 -Data Connectivity, APIs, and Endpoints.mp4
    07:05
  • 3 -API.mp4
    08:05
  • 4 -4. Exchanging Information using Text Files.mp4
    04:20
  • 5 -Software Integration.mp4
    05:25
  • 1 -What's next in the course.mp4
    04:08
  • 2 -Defining the Task - Absenteeism at Work.mp4
    02:48
  • 3 -3. The Data Set.mp4
    03:18
  • 1 -Importing the Data Set in Python.mp4
    03:23
  • 2 -Eyeballing the Data.mp4
    05:53
  • 3 -Introduction to Terms with Multiple Meanings.mp4
    03:27
  • 4 -An Analytical Approach to Solving the Task.mp4
    02:17
  • 5 -Dropping the 'ID' Column.mp4
    06:27
  • 6 -Analysis of the 'Reason for Absence' Column.mp4
    05:04
  • 7 -Converting a Feature into Multiple Dummy Variables.mp4
    08:37
  • 8 -Working with Dummy Variables from a Statistical Perspective.mp4
    01:28
  • 9 -Grouping the Various Reasons for Absence.mp4
    08:35
  • 10 -Concatenating Column Values.mp4
    04:35
  • 11 -Reordering Columns.mp4
    01:43
  • 12 -Creating Checkpoints in Jupyter.mp4
    02:52
  • 13 -Working on the 'Date' Column.mp4
    07:48
  • 14 -Extracting the Month Value.mp4
    07:00
  • 15 -Creating the 'Day of the Week' Column.mp4
    03:36
  • 16 -Analyzing the Next 5 Columns in our DataFrame.mp4
    03:17
  • 17 -Modifying 'Education' and discussing 'Children' and 'Pets'.mp4
    04:38
  • 18 -Final Remarks on the Data Preprocessing Part of the Exercise.mp4
    01:59
  • 1 -Exploring the Problem from a Machine Learning Point of View.mp4
    03:20
  • 2 -Creating the Targets for the Regression.mp4
    06:32
  • 3 -Selecting the Inputs for the Regression.mp4
    02:41
  • 4 -Standardizing the Dataset for Better Results.mp4
    03:26
  • 5 -Train-Test Split.mp4
    06:12
  • 6 -Training and evaluating the model.mp4
    05:39
  • 7 -Extracting the Intercept and Coefficients.mp4
    05:16
  • 8 -Interpreting the Coefficients.mp4
    06:14
  • 9 -Creating a Custom Scaler to Standardize Only Numerical Features.mp4
    04:12
  • 10 -Interpreting the (Important) Coefficients.mp4
    05:10
  • 11 -Simplifying the Model (Backward Elimination).mp4
    04:02
  • 12 -Testing the Logistic Regression Model.mp4
    04:43
  • 13 -Saving the Logistic Regression Model.mp4
    04:06
  • 14 -Creating a module for later use of the model.mp4
    04:04
  • 1 -Loading the 'absenteeism_module'.mp4
    03:50
  • 2 -Working with the 'absenteeism_module'.mp4
    06:23
  • 3 -Creating a Database Structure in MySQL.mp4
    06:12
  • 4 -Installing and Importing 'pymysql'.mp4
    02:44
  • 5 -Setting up a Connection and Creating a Cursor.mp4
    02:54
  • 6 -Creating the 'predicted_outputs' table in MySQL.mp4
    04:52
  • 7 -Executing an SQL Query from Python.mp4
    03:04
  • 8 -Moving Data from Python to SQL - Part I.mp4
    06:15
  • 9 -Moving Data from Python to SQL - Part II.mp4
    06:35
  • 10 -Moving Data from Python to SQL - Part III.mp4
    02:45
  • 1 -Tableau Analysis - Age vs Probability.mp4
    08:49
  • 2 -Tableau Analysis - Reasons vs Probability.mp4
    07:49
  • 3 -Tableau Analysis - Transportation Expense vs Probability.mp4
    06:00
  • More details


    User Reviews
    Rating
    0
    0
    0
    0
    0
    average 0
    Total votes0
    Focused display
    Category
    Students take courses primarily to improve job-related skills.Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.
    • language english
    • Training sessions 53
    • duration 4:16:20
    • Release Date 2025/01/15